Skip Counting by 2s

Count by 2s and colour the numbers that you say.

□ Start at 2 and colour the numbers blue.
□ Start at 1 and colour the numbers red.

The blue numbers have ones digit __, __, __, __, __, or __.
The red numbers have ones digit __, __, __, __, __, or __.

□ Count by 2s.

2 _____ _____ _____ _____ 14

42 _____ _____ _____ _____ _____

86 _____ _____ _____ q4 _____ _____

1 _____ _____ _____ q _____ _____

61 _____ _____ _____ _____ _____

□ Count back by 2s.

86 84 _____ _____ 76 _____
Skip Counting by 5s and 10s

☐ Start at 5 and count by 5s. Colour the numbers that you say.

The coloured numbers have ones digit _____ or _____.

☐ Count by 5s.

☐ Count back by 5s.

CA 2.2 AP Unit 12 p1-20 V3.indd 2
22/09/2017 4:45:48 PM
☐ Count by 2s and then by 1s to see how many.

[Diagram of dots counted by 2s and then by 1s]

☐ Count by 5s and then by 1s to see how many.

[Diagram of dots counted by 5s and then by 1s]

There are _____ letters in the alphabet.
Count how many.
Use groups of 10.

_____ windows

_____ crayons

_____ squares

_____ dots
Count by 10s and colour the numbers that you say.

☐ Start at 10 and colour the numbers red.
☐ Start at 7 and colour the numbers blue.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
</tbody>
</table>

The red numbers have ones digit _____.
The blue numbers have ones digit _____.

☐ Count by 10s.

20 _____ _____ _____ 50 _____ _____ _____

40 _____ _____ _____ _____ 90 _____

37 _____ _____ _____ 77 _____ _____

22 _____ _____ _____ _____ _____

15 _____ _____ _____ _____ _____
If you can count back from 10 by 1s

10 9 8 7 ...

Then you can count back from 100 by 10s

100 90 80 70 ...

And from 93 by 10s

93 83 73 63 ...

☐ Count back by 10s.

100 _____ _____ _____ _____ _____

53 _____ _____ _____ _____ _____

80 _____ _____ _____ _____ _____

76 _____ _____ _____ _____ _____

65 _____ _____ _____ _____ _____

92 _____ _____ _____ _____ _____

Number Sense 2-44
Closer To

☐ Write 0 or 10.

8 is closer to __10__.

4 is closer to ____.

6 is closer to ____.

2 is closer to ____.

☐ Bonus: Show the number that is equally close to 0 and 10.

Number Sense 2-45
Circle the numbers that are more than 5.

0 1 2 3 4 5 6 7 8 9 10

Are the numbers more than 5 closer to 0 or 10? __10__

Circle the numbers that are less than 5.

0 1 2 3 4 5 6 7 8 9 10

Are the numbers less than 5 closer to 0 or 10? ______

☐ Circle more or less.
☐ Write 0 or 10.

8 is more/less than 5, so 8 is closer to __10__.

2 is more/less than 5, so 2 is closer to ____.

4 is more/less than 5, so 4 is closer to ____.

6 is more/less than 5, so 6 is closer to ____.

1 is more/less than 5, so 1 is closer to ____.
Is 7 closer to 0 or 10? 10

Is 27 closer to 20 or 30?

Is 57 closer to 50 or 60?

Circle the correct number.

Is 87 closer to 80 or 90?

Is 97 closer to 90 or 100?

Is 3 closer to 0 or 10?
Is 13 closer to 10 or 20?
Is 73 closer to 70 or 80?

Is 46 closer to 40 or 50?

Is 52 closer to 50 or 60?

Is 24 closer to 20 or 30?

Is 38 closer to 30 or 40?
- Write three numbers between the two tens.

<table>
<thead>
<tr>
<th>20 and 30</th>
<th>50 and 60</th>
<th>90 and 100</th>
</tr>
</thead>
</table>

- Write the tens that the number is between.

<table>
<thead>
<tr>
<th>34 is between 30 and 40.</th>
<th>86 is between ___ and ___.</th>
</tr>
</thead>
<tbody>
<tr>
<td>41 is between ___ and ___.</td>
<td>65 is between ___ and ___.</td>
</tr>
</tbody>
</table>

- Find the ten that the number is closest to by using 5.

<table>
<thead>
<tr>
<th>37 is between 30 and 40.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 is more/less than 5.</td>
</tr>
<tr>
<td>37 is closest to 40.</td>
</tr>
<tr>
<td>62 is between ___ and ___.</td>
</tr>
<tr>
<td>2 is more/less than 5.</td>
</tr>
<tr>
<td>62 is closest to ___.</td>
</tr>
<tr>
<td>26 is between ___ and ___.</td>
</tr>
<tr>
<td>6 is more/less than 5.</td>
</tr>
<tr>
<td>26 is closest to ___.</td>
</tr>
<tr>
<td>84 is between ___ and ___.</td>
</tr>
<tr>
<td>4 is more/less than 5.</td>
</tr>
<tr>
<td>84 is closest to ___.</td>
</tr>
<tr>
<td>53 is closest to ______.</td>
</tr>
<tr>
<td>79 is closest to ______.</td>
</tr>
</tbody>
</table>
Estimating Numbers

10 dots are circled.

☐ Estimate the closest ten.
☐ Group by 10s to check.

Estimate: _____
Check: _____
Closest ten: _____

Estimate: ______
Check: ______
Closest ten: ______

Estimate: ______
Check: ______
Closest ten: ______

Estimate: ______
Check: ______
Closest ten: ______
10 dots are circled.

☐ Estimate the closest ten. _____
☐ Circle 2 more groups of 10. Estimate again. _____

☐ Group by 10s to count. _____

Did circling more groups of 10 improve your estimate? yes / no
☐ Why do you think that happened?
Adding Tens and Ones

☐ Write the number as a sum of 10s and 1s.

\[
32 = \underline{10 + 10 + 10 + 1 + 1} \quad 13 = \underline{\hspace{2cm}}
\]

\[
41 = \underline{\hspace{2cm}} \quad 22 = \underline{\hspace{2cm}}
\]

☐ We can write 24 = 20 + 4. Write the number in the same way.

\[
35 = \underline{30 + 5} \quad 47 = \underline{\hspace{2cm}} \quad 63 = \underline{\hspace{2cm}}
\]

\[
81 = \underline{\hspace{2cm}} \quad 56 = \underline{\hspace{2cm}} \quad 92 = \underline{\hspace{2cm}}
\]

☐ Add.

\[
40 + 5 = \underline{45} \quad 6 + 20 = \underline{\hspace{2cm}} \quad 70 + 1 = \underline{\hspace{2cm}}
\]

\[
8 + 60 = \underline{\hspace{2cm}} \quad 70 + 7 = \underline{\hspace{2cm}} \quad 4 + 50 = \underline{\hspace{2cm}}
\]

\[
30 + 8 = \underline{\hspace{2cm}} \quad 9 + 10 = \underline{\hspace{2cm}} \quad 6 + 80 = \underline{\hspace{2cm}}
\]

\[
7 + 90 = \underline{\hspace{2cm}} \quad 9 + 70 = \underline{\hspace{2cm}} \quad 90 + 9 = \underline{\hspace{2cm}}
\]
☐ Add.

\[
\begin{align*}
5 + 2 &= 1 + 1 + 1 + 1 + 1 + 1 + 1 = \\
50 + 20 &= 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 = \\
4 + 4 &= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = \\
40 + 40 &= 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 = \\
2 + 3 &= 1 + 1 + 1 + 1 + 1 = \\
20 + 30 &= 10 + 10 + 10 + 10 + 10 + 10 + 10 = \\
2 + 6 &= \\
20 + 60 &= \\
4 + 1 &= \\
40 + 10 &= \\
5 + 4 &= \\
50 + 40 &= \\
1 + 5 &= \\
10 + 50 &= \\
3 + 3 &= \\
30 + 30 &= \\
3 + 4 &= \\
30 + 40 &= \\
1 + 3 + 2 &= \\
10 + 30 + 20 &= \\
2 + 3 + 2 + 1 &= \\
20 + 30 + 20 + 10 &= \\
\end{align*}
\]
Adding in Two Ways

☐ Move the line one dot to the right.
☐ Write the new addition sentence.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>2 + 4 = 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 + 3 = 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 + 4 = 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 + 2 = 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 + 2 = 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 + 2 = 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 + 2 = 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 + 4 = 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 + 1 = 4</td>
</tr>
</tbody>
</table>

How does the first number change? It goes up by 1.
How does the second number change?
What happens to the total?
Why does that happen?
☐ Add and subtract 1 to make a new number sentence.

\[
\begin{align*}
2 + 5 &= 7 \\
 +1 && -1 \\
3 + 4 &= 7
\end{align*}
\]

\[
\begin{align*}
3 + 8 &= 11 \\
 +1 && -1 \\
\square + \square &= \square
\end{align*}
\]

\[
\begin{align*}
6 + 3 &= 9 \\
 +1 && -1 \\
\square + \square &= \square
\end{align*}
\]

\[
\begin{align*}
8 + 3 &= 11 \\
 +1 && -1 \\
\square + \square &= \square
\end{align*}
\]

\[
\begin{align*}
9 + 6 &= 15 \\
 +1 \\
\square + \square &= \square
\end{align*}
\]

\[
\begin{align*}
5 + 2 &= 7 \\
 &-1 \\
\square + \square &= \square
\end{align*}
\]

\[
\begin{align*}
7 + 11 &= 18 \\
 &&-1 \\
\square + \square &= \square
\end{align*}
\]

\[
\begin{align*}
11 + 7 &= 18 \\
 +1 \\
\square + \square &= \square
\end{align*}
\]

☐ Finish the addition sentence.

\[
\begin{align*}
6 + 11 &= 7 + ____ \\
8 + 4 &= 9 + ____
\end{align*}
\]
☐ Draw a model.
☐ Move the line one dot to the left.
☐ Write the new addition sentence.

```
2 + 4 = 6
1 + 5 = 6

2 + 3 = 5

4 + 1 = 5
4 + 2 = 6

2 + 2 = 4
1 + 2 = 3

2 + 1 = 3
4 + 0 = 4
```

How does the first number change? ________________

How does the second number change? ________________

What happens to the total? ___________________________

☐ Why does that happen?
□ Change both numbers in opposite ways.
□ Complete the two addition sentences.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>+</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>7</td>
</tr>
<tr>
<td>=</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>+</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>=</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>+</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>+</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>+</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>+</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>+</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>+</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In each question, did the total change? _____

Number Sense 2-52
Using 10 to Add

☐ Use the group of 10 to help you add.

\[
\begin{align*}
7 + 6 &= 10 + \underline{3} = 13 \\
8 + 6 &= 10 + \underline{\quad} = \underline{\quad} \\
9 + 7 &= 10 + \underline{\quad} = \underline{\quad} \\
8 + 8 &= \underline{\quad} + 10 = \underline{\quad} \\
7 + 5 &= 10 + \underline{\quad} = \underline{\quad} \\
4 + 8 &= \underline{\quad} + 10 = \underline{\quad}
\end{align*}
\]

☐ Sara groups 10 in two ways. Does she get the same answer?

\[
\begin{align*}
3 + q &= 10 + \underline{\quad} = \underline{\quad} \\
3 + q &= \underline{\quad} + 10 = \underline{\quad}
\end{align*}
\]
Circle a group of 10.
Use 10 to add.

\[
\begin{align*}
4 + 7 &= 10 + __ = __ \\
8 + 6 &= 10 + __ = __
\end{align*}
\]

\[
\begin{align*}
9 + 4 &= 10 + __ = __ \\
9 + 2 &= 10 + __ = __
\end{align*}
\]

\[
\begin{align*}
7 + 7 &= 10 + __ = __
\end{align*}
\]
Using the Nearest 10 to Add

☐ Use 10 to add.

8 + 6 = 10 + ___ = ________________

7 + 5 = 10 + _____ = ______

7 + 9 = 10 + _____ = ______

☐ Draw the circles, then add.

6 + 5 = 10 + _____ = ______

9 + 5 = 10 + _____ = ______

Does using 10 make adding easier? ______

☐ Explain.

☐ Which two answers are the same? Why did that happen?
□ What makes 10 with the first number?
 Subtract that amount from the second number.
□ Complete the addition sentences.

```
8 +  5 = 13
   +2  
10 +  3 = 13
   -2  

8 +  7 = __

q +  6 = __

q +  8 = __

8 + q = __

q +  7 = __

q +  5 = 10 + __ = ___

8 +  4 = 10 + __ = ___

q +  4 = __ + __ = ___

8 +  6 = __ + __ = ___
```
Add 1 to one of the numbers.
Subtract 1 from the other number.
Complete the new addition sentence.

<table>
<thead>
<tr>
<th>32 + q</th>
<th>19 + 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 + 10 = 41</td>
<td>____ + ____ = ____</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 + 2q</th>
<th>27 + 1q</th>
</tr>
</thead>
<tbody>
<tr>
<td>____ + ____ = ____</td>
<td>____ + ____ = ____</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1q + 16</th>
<th>2q + 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>____ + ____ = ____</td>
<td>____ + ____ = ____</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18 + q</th>
<th>q + 36</th>
</tr>
</thead>
<tbody>
<tr>
<td>____ + ____ = ____</td>
<td>____ + ____ = ____</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>q + 47</th>
<th>38 + 1q</th>
</tr>
</thead>
<tbody>
<tr>
<td>____ + ____ = ____</td>
<td>____ + ____ = ____</td>
</tr>
</tbody>
</table>

Sam has to solve 27 + 2q. He says 26 + 30 has the same answer. Explain why he is correct.

Which problem is easier, 27 + 2q or 26 + 30? Explain.
Make a new addition problem by adding and subtracting 2.

Solve the new addition problem.

<table>
<thead>
<tr>
<th>Addition Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 + 15</td>
<td>20 + ___ = ___</td>
</tr>
<tr>
<td>37 + 48</td>
<td>___ + 50 = ___</td>
</tr>
<tr>
<td>42 + 54</td>
<td>40 + ___ = ___</td>
</tr>
<tr>
<td>56 + 32</td>
<td>___ + ___ = ___</td>
</tr>
<tr>
<td>22 + 35</td>
<td>___ + ___ = ___</td>
</tr>
<tr>
<td>14 + 28</td>
<td>___ + 30 = ___</td>
</tr>
<tr>
<td>68 + 24</td>
<td>70 + ___ = ___</td>
</tr>
<tr>
<td>72 + 17</td>
<td>70 + ___ = ___</td>
</tr>
<tr>
<td>28 + 45</td>
<td>___ + ___ = ___</td>
</tr>
<tr>
<td>43 + 48</td>
<td>___ + ___ = ___</td>
</tr>
</tbody>
</table>
Using Tens and Ones to Add

How many tens and ones altogether?

☐ Add.

\[
\begin{align*}
13 & + 12 = 25 \\
14 & + 13 = _
\end{align*}
\]

☐ Now draw the blocks and add.

\[
\begin{align*}
12 & + 12 = _
\end{align*}
\]

☐ Make your own problem.

\[
\begin{align*}
_
& + _
\end{align*}
\]
☐ Add by separating the tens and ones.

\[
\begin{align*}
23 & = 20 + 3 \\
+ 34 & = 30 + 4 \\
\hline
57 & = 50 + 7
\end{align*}
\]

\[
\begin{align*}
34 & = 30 + 4 \\
+ 15 & = 10 + 5 \\
\hline
49 & = 40 + 9
\end{align*}
\]

\[
\begin{align*}
27 & = 20 + \Box \\
+ 22 & = 20 + \Box \\
\hline \Box & = 40 + \Box
\end{align*}
\]

\[
\begin{align*}
35 & = \Box + \Box \\
+ 42 & = \Box + \Box \\
\hline \Box & = \Box + \Box
\end{align*}
\]

\[
\begin{align*}
15 & = \Box + \Box \\
+ 23 & = \Box + \Box \\
\hline \Box & = \Box + \Box
\end{align*}
\]

\[
\begin{align*}
26 & = \Box + \Box \\
+ 13 & = \Box + \Box \\
\hline \Box & = \Box + \Box
\end{align*}
\]

\[
\begin{align*}
34 & = \Box + \Box \\
+ 54 & = \Box + \Box \\
\hline \Box & = \Box + \Box
\end{align*}
\]

\[
\begin{align*}
26 & = \Box + \Box \\
+ 33 & = \Box + \Box \\
\hline \Box & = \Box + \Box
\end{align*}
\]

\[
\begin{align*}
22 & = \Box + \Box \\
14 & = \Box + \Box \\
+ 21 & = \Box + \Box \\
\hline \Box & = \Box + \Box
\end{align*}
\]

\[
\begin{align*}
11 & = \Box + \Box \\
22 & = \Box + \Box \\
+ 33 & = \Box + \Box \\
\hline \Box & = \Box + \Box
\end{align*}
\]
Add by using a tens and ones chart.

\[
\begin{array}{c}
35 \\
+ 32 \\
\hline
67
\end{array}
\]

\[
\begin{array}{c}
24 \\
+ 41 \\
\hline

\end{array}
\]

\[
\begin{array}{c}
46 \\
+ 31 \\
\hline

\end{array}
\]

\[
\begin{array}{c}
43 \\
+ 23 \\
\hline

\end{array}
\]

\[
\begin{array}{c}
27 \\
+ 21 \\
+ 51 \\
\hline

\end{array}
\]

\[
\begin{array}{c}
31 \\
+ 42 \\
+ 14 \\
\hline

\end{array}
\]

\[
\begin{array}{c}
3 2 \\
+ 2 7 \\
\hline

\end{array}
\]

\[
\begin{array}{c}
4 8 \\
+ 3 1 \\
\hline

\end{array}
\]

\[
\begin{array}{c}
5 5 \\
+ 2 3 \\
\hline

\end{array}
\]

\[
\begin{array}{c}
2 2 \\
+ 2 3 \\
\hline

\end{array}
\]

\[
\begin{array}{c}
37 \\
+ 22 \\
\hline
63 \\
+ 16 \\
\hline
25 \\
+ 34 \\
\hline
23
\end{array}
\]

\[
\begin{array}{c}
31 \\
+ 62 \\
\hline
54 \\
+ 34 \\
\hline
43
\end{array}
\]
Many Ways to Write a Number

Write 53 in many ways.

5 tens + 3 ones

5 tens + 4 ones

4 tens + 5 ones
Write the number in many ways.

<table>
<thead>
<tr>
<th>24</th>
<th>27</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td>tens</td>
<td>ones</td>
<td>tens</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>37</th>
<th>38</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>tens</td>
<td>ones</td>
<td>tens</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>50</th>
<th>56</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>tens</td>
<td>ones</td>
<td>tens</td>
</tr>
</tbody>
</table>
Regrouping

☐ Group 10 ones blocks together.
☐ Add.

\[
\begin{align*}
7 + 5 &= 10 + \underline{2} = \underline{12} \\
6 + 8 &= 10 + \underline{6} = \underline{14} \\
5 + 8 &= 10 + \underline{8} = \underline{18} \\
8 + 4 &= 10 + \underline{4} = \underline{12} \\
7 + 7 &= 10 + \underline{7} = \underline{14}
\end{align*}
\]
Group 10 ones blocks together. How many tens and ones?

Add.

\[
\begin{align*}
\text{tens} + \text{one} & \quad \text{tens} + \text{ones} \\
14 + 17 &= 31 \\
17 + 16 &= \quad \quad \\
18 + 25 &= \quad \quad \\
36 + 46 &= \quad \quad
\end{align*}
\]
- Trade groups of 10 ones for tens.
- Regroup in the next row.

<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Add the tens and ones.
Regroup in the next row.
Write the answer.

\[
\begin{array}{c|c|c}
\text{tens} & \text{ones} & \text{answer} \\
\hline
1 & 6 & 16 \\
5 & 5 & + 55 \\
6 & 1 & 71 \\
7 & 1 & \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{tens} & \text{ones} & \text{answer} \\
\hline
1 & 2 & 12 \\
2 & 9 & + 29 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{tens} & \text{ones} & \text{answer} \\
\hline
2 & 5 & 25 \\
3 & 8 & + 38 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{tens} & \text{ones} & \text{answer} \\
\hline
5 & 7 & 57 \\
2 & 6 & + 26 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{tens} & \text{ones} & \text{answer} \\
\hline
2 & 8 & 28 \\
2 & 6 & + 26 \\
\hline
\end{array}
\]

\[
\begin{array}{c|c|c|c}
\text{tens} & \text{ones} & \text{answer} \\
\hline
2 & 3 & 23 \\
5 & 2 & + 16 \\
1 & 6 & \\
\hline
\end{array}
\]
The Standard Algorithm for Addition

☐ Add the ones.
☐ Write the tens digit in the tens column.
☐ Write the ones digit in the ones column.

\[
\begin{align*}
5 + q &= 1 \boxed{4} \\
7 + 5 &= \boxed{12} \\
6 + q &= \boxed{10} \\
6 + 4 &= 1 \boxed{0} \\
\end{align*}
\]

\[
\begin{align*}
tens & \quad \text{ones} \\
1 & \quad 5 \\
+ & \quad 2 \quad q \\
\underline{\text{tens ones}} & \quad \boxed{4}
\end{align*}
\]

\[
\begin{align*}
tens & \quad \text{ones} \\
2 & \quad 3 \\
+ & \quad 3 \quad 8 \\
\underline{\text{tens ones}} & \quad \boxed{1} \quad \boxed{6}
\end{align*}
\]

\[
\begin{align*}
tens & \quad \text{ones} \\
5 & \quad 6 \\
+ & \quad 3 \quad 4 \\
\underline{\text{tens ones}} & \quad \boxed{1} \quad \boxed{6}
\end{align*}
\]

\[
\begin{align*}
tens & \quad \text{ones} \\
3 & \quad 7 \\
+ & \quad 2 \quad 5 \\
\underline{\text{tens ones}} & \quad \boxed{6} \quad \boxed{2}
\end{align*}
\]

\[
\begin{align*}
tens & \quad \text{ones} \\
1 & \quad 6 \\
+ & \quad 4 \quad q \\
\underline{\text{tens ones}} & \quad \boxed{1} \quad \boxed{4}
\end{align*}
\]

\[
\begin{align*}
tens & \quad \text{ones} \\
2 & \quad 7 \\
+ & \quad 3 \quad 8 \\
\underline{\text{tens ones}} & \quad \boxed{1} \quad \boxed{4}
\end{align*}
\]

\[
\begin{align*}
tens & \quad \text{ones} \\
1 & \quad 4 \\
+ & \quad 3 \quad 8 \\
\underline{\text{tens ones}} & \quad \boxed{1} \quad \boxed{7}
\end{align*}
\]

\[
\begin{align*}
tens & \quad \text{ones} \\
4 & \quad 7 \\
+ & \quad 2 \quad 3 \\
\underline{\text{tens ones}} & \quad \boxed{1} \quad \boxed{5}
\end{align*}
\]

\[
\begin{align*}
tens & \quad \text{ones} \\
1 & \quad 5 \\
+ & \quad 3 \quad 5 \\
\underline{\text{tens ones}} & \quad \boxed{1} \quad \boxed{4}
\end{align*}
\]
Add the ones first.
Then add the tens to find the total.

\[
\begin{array}{c}
1 \quad 1 \text{ } 5 \\
+ \quad 2 \text{ } 9 \\
\hline
4 \text{ } 4
\end{array}
\]

\[
\begin{array}{c}
2 \text{ } 3 \\
+ \text{ } 3 \text{ } 8 \\
\hline
5 \quad 6
\end{array}
\]

\[
\begin{array}{c}
5 \text{ } 6 \\
+ \text{ } 3 \text{ } 4 \\
\hline
2 \text{ } 9
\end{array}
\]

\[
\begin{array}{c}
1 \text{ } 5 \\
+ \text{ } 2 \text{ } 9 \\
\hline
4 \text{ } 4
\end{array}
\]

\[
\begin{array}{c}
3 \text{ } 7 \\
+ \text{ } 2 \text{ } 5 \\
\hline
\text{ } \text{ } \text{ }
\end{array}
\]

\[
\begin{array}{c}
1 \text{ } 6 \\
+ \text{ } 4 \text{ } 9 \\
\hline
2 \text{ } 7
\end{array}
\]

\[
\begin{array}{c}
2 \text{ } 7 \\
+ \text{ } 3 \text{ } 8 \\
\hline
1 \text{ } 5
\end{array}
\]

\[
\begin{array}{c}
1 \text{ } 4 \\
+ \text{ } 3 \text{ } 8 \\
\hline
4 \text{ } 7
\end{array}
\]

\[
\begin{array}{c}
4 \text{ } 7 \\
+ \text{ } 2 \text{ } 3 \\
\hline
1 \text{ } 5
\end{array}
\]

\[
\begin{array}{c}
2 \text{ } 8 \\
+ \text{ } 3 \text{ } 8 \\
\hline
\text{ } \text{ } \text{ }
\end{array}
\]
Add. Regroup when you need to.

Liz added the tens before the ones.

Circle the answers she got wrong.

Add.

29 + 14
37 + 46
48 + 23
55 + 39
Subtraction Strategies

☐ Count backwards to subtract.

\[
6 - 1 = \underline{5} \\
7 - 2 = \underline{5} \\
8 - 3 = \underline{5}
\]

☐ Count forwards to subtract.

\[
8 - 5 = \underline{3} \\
9 - 6 = \underline{3} \\
10 - 7 = \underline{3}
\]

☐ Take away the coloured circles to subtract.

\[
10 - 2 = \underline{8} \\
11 - 3 = \underline{8} \\
12 - 4 = \underline{8}
\]

☐ Write 4 more subtraction sentences with the same answer.

\[
\underline{10 - 6 = 4} \\
\underline{10 - 6 = 4} \\
\underline{10 - 6 = 4}
\]
Circle the easiest problem to solve.

<table>
<thead>
<tr>
<th>17 - 9</th>
<th>18 - 10</th>
<th>19 - 11</th>
<th>20 - 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 - 8</td>
<td>12 - 9</td>
<td>13 - 10</td>
<td>14 - 11</td>
</tr>
<tr>
<td>18 - 13</td>
<td>17 - 12</td>
<td>16 - 11</td>
<td>15 - 10</td>
</tr>
</tbody>
</table>

Explain your choices.

Make an easier problem with the same answer.

Subtract.

<table>
<thead>
<tr>
<th>13 - 8 = [15] - 10 = 5</th>
<th>13 - 9 = [] - 10 = []</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 - 9 = [] - 10 = []</td>
<td>14 - 8 = [] - 10 = []</td>
</tr>
<tr>
<td>17 - 8 = [] - 10 = []</td>
<td>15 - 9 = [] - 10 = []</td>
</tr>
<tr>
<td>12 - 9 = [] - 10 = []</td>
<td>24 - 18 = [] - 20 = []</td>
</tr>
</tbody>
</table>

Bonus
☐ Subtract.

13 − 3 = ____

23 − 3 = ____

33 − 3 = ____

43 − 3 = ____

73 − 3 = ____

63 − 3 = ____

82 − 2 = ____

67 − 7 = ____

54 − 4 = ____

91 − 1 = ____

85 − 5 = ____

76 − 6 = ____

89 − 9 = ____

50 − 0 = ____

28 − 8 = ____

74 − 4 = ____

68 − 8 = ____

41 − 1 = ____
Write more or less.

Subtract.

74 − 3 is \(1\) more than 73 − 3

73 − 3 = 70 so 74 − 3 = 71

84 − 5 is \(1\) less than 85 − 5

85 − 5 = _____ so 84 − 5 = _____

75 − 6 is \(1\) _________ than 76 − 6

76 − 6 = _____ so 75 − 6 = _____

57 − 6 is \(1\) _________ than 56 − 6

56 − 6 = _____ so 57 − 6 = _____

48 − 9 is \(1\) _________ than 49 − 9

49 − 9 = _____ so 48 − 9 = _____

Solve 78 − 9 in two ways.

Bonus: Solve 78 − 9 in a third way.
More Subtraction Strategies

☐ Count on to subtract.

36 + [4] = 40
so
40 − 36 = [4]

7 + [____] = 10 so 10 − 7 = [____]
17 + [____] = 20 so 20 − 17 = [____]
27 + [____] = 30 so 30 − 27 = [____]

10 − 8 = [____]
20 − 18 = [____]
30 − 28 = [____]
10 − 5 = [____]
20 − 15 = [____]
30 − 25 = [____]
10 − 9 = [____]
40 − 39 = [____]
90 − 89 = [____]

7 − 4 = 3 so 70 − 40 = 3 tens = 30

8 − 3 = [5] so 80 − 30 = [50]

10 − 5 = [____] so 100 − 50 = [____]

80 − 50 = [____] 70 − 30 = [____] 90 − 40 = [____]
Subtract by adding.

What is $80 - 56$?

$80 - 56$ is $4 + 20 = 24$

What is $90 - 72$?

$90 - 72$ is $\Box + \Box = \Box$

What is $83 - 40$?

$83 - 40$ is $\Box + \Box = \Box$

What is $90 - 57$?

$90 - 57$ is $\Box + \Box = \Box$

What is $75 - 40$?

$75 - 40$ is $\Box + \Box = \Box$

What is $30 - 3$?

$30 - 3$ is $\Box + \Box = \Box$

What is $64 - 20$?

$64 - 20$ is $\Box + \Box = \Box$

What is $77 - 40$?

$77 - 40$ is $\Box + \Box = \Box$

What is $80 - 16$?

$80 - 16$ is $\Box + \Box = \Box$
Subtract by using tens and adding.

15 – 7 = 8
7 10 15
3 + 5 = 8

25 – 17 =
17 20 25

35 – 27 =
27 30 35

42 – 36 =
36 40 42

83 – 56 = 27
56 60 80 83
4 + 20 + 3 = 27

92 – 49 =
49 50 90 92

78 – 29 =
29 30 70 78

95 – 57 =
57 60 90 95

Number Sense 2-62
Subtracting Using Tens and Ones

- Use ones blocks and tens blocks to subtract.
- Colour blocks to show the second number.

What number do the white blocks show?

- $47 - 23 = 24$
- $34 - 13 = 21$
- $48 - 31 = 17$
- $45 - 20 = 25$
Cross out the correct number of 10s and 1s. Subtract.

\[
\begin{array}{c}
87 \\
- 63 \\
\hline
24
\end{array}
\]

Cross out 6 tens and 3 ones. How much is left?

\[
\begin{array}{c}
96 \\
- 34 \\
\hline
\square
\end{array}
\]

Cross out 3 tens and 4 ones. How much is left?

\[
\begin{array}{c}
57 \\
- 31 \\
\hline
\square
\end{array}
\]

Cross out ___ tens and ___ one. How much is left?

\[
\begin{array}{c}
28 \\
- 11 \\
\hline
\square
\end{array}
\]

___________________________. How much is left?

\[
\begin{array}{c}
65 \\
- 34 \\
\hline
\square
\end{array}
\]

Check by adding your answer. Do you get 65?
Subtract.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtract, then check your answer by adding.

<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Regrouping for Subtraction

To find 45 − 28, Lela draws tens and ones blocks for 45. She tries to colour 28.

Lela can only colour 25, so she trades a tens block for 10 ones blocks. Now she can colour 28.

45 − 28 = 17
There are 17 left.

What number is shown?

Write the subtraction sentence for the model.

32 − 14 = 18

Number Sense 2-64
Show Lela’s trade in a tens and ones chart.

```
  15  
  1   5  
  15  
  0   15  
```

Show Lela’s subtraction using a tens and ones chart.

```
  3   4  
  1   6  
  2   14  
  1   6  
  1   8  
```

```
  2   3  
  0   7  
```

```
  3   2  
  1   5  
  1   5  
  2   7  
```
□ Trade a ten for 10 ones.
□ Subtract.
□ Check your answer by adding.

<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
<th>tens</th>
<th>ones</th>
<th>check</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

\[63 - 47 = \boxed{16} \]

<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
<th>tens</th>
<th>ones</th>
<th>check</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[87 - 59 = \boxed{28} \]

<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
<th>tens</th>
<th>ones</th>
<th>check</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>9</td>
<td>5</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
</tr>
</tbody>
</table>

\[87 - 38 = \boxed{49} \]

<table>
<thead>
<tr>
<th>tens</th>
<th>ones</th>
<th>tens</th>
<th>ones</th>
<th>check</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

\[63 - 47 = \boxed{16} \]
The Standard Algorithm for Subtraction

☐ Take 1 ten from the tens and add 10 ones to the ones.

\[
\begin{align*}
50 &= \underline{5} \text{ tens} + \underline{0} \text{ ones} \\
&= \underline{4} \text{ tens} + \underline{10} \text{ ones} \\
73 &= \underline{7} \text{ tens} + \underline{3} \text{ ones} \\
&= \underline{6} \text{ tens} + \underline{13} \text{ ones} \\
85 &= \underline{8} \text{ tens} + \underline{5} \text{ ones} \\
&= \underline{7} \text{ tens} + \underline{15} \text{ ones}
\end{align*}
\]
Regroup 1 ten as 10 ones. Subtract.

- 6 15
 - 5 7
 = 1 8

- 8 3
 - 5 6
- 5 4
 - 3 9

- 4 6
 - 2 7
- 9 2
 - 8 7
- 8 1
 - 5 5

- 5 3
 - 2 9
- 6 0
 - 3 6
- 9 1
 - 7 2

- 9 6
 - 2 9
- 8 7
 - 3 8
- 8 0
 - 5 7

Check your answers by adding.
Decide if you need to regroup. Subtract.

- \[48 - 25\]
- \[47 - 19\]
- \[49 - 17\]
- \[53 - 48\]
- \[58 - 43\]
- \[67 - 33\]
- \[70 - 37\]
- \[81 - 61\]
- \[98 - 27\]
- \[85 - 36\]
- \[90 - 48\]

Check your answers by adding.
Skip Counting by Different Numbers

☐ Count by 5s, then by 1s.

☐ Count by 10s, then by 1s.
☐ Count by 10s, then by 5s.

☐ Count by 10s, then by 5s, then by 1s.
Count by $\underline{25\text{\'s}}$, $\underline{10\text{\'s}}$, $\underline{5\text{\'s}}$, and $\underline{1\text{\'s}}$.

\[25, 50, 60, 70, 80, 81, 82\]

\[25, 35, \square, \square, \square, \diamond, \diamond, \circ, \circ\]

\[\square, \square, \square, \square, \square, \diamond, \diamond, \circ, \circ\]

\[\square, \square, \square, \square, \square, \diamond, \diamond, \circ, \circ\]

\[\square, \square, \square, \square, \square, \diamond, \diamond, \circ, \circ\]

\[\square, \square, \square, \square, \square, \diamond, \diamond, \circ, \circ\]

\[\square, \square, \square, \square, \square, \diamond, \diamond, \circ, \circ\]

Make up your own.
Coin Values

- **Write the value on the coin.**
- **Write the name of the coin.**

<table>
<thead>
<tr>
<th>quarter</th>
<th>loonie</th>
<th>dime</th>
</tr>
</thead>
<tbody>
<tr>
<td>nickel</td>
<td>penny</td>
<td>toonie</td>
</tr>
</tbody>
</table>

- **penny**
- **loonie**
- **dime**

- **penny**
- **loonie**
- **dime**

- **5 cents**
- **loonie**
- **2 dollars**
Counting Coins

☐ Skip count by the coin value.

5¢ 5¢ 5¢ 5¢ 5¢ 5¢ 5¢
5¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢
10¢ 10¢ 10¢ 10¢ 10¢ 10¢ 10¢

Bonus: Circle the greatest amount of money.
Count the money by the coin value.

<table>
<thead>
<tr>
<th>5¢</th>
<th>5¢</th>
<th>5¢</th>
<th>1¢</th>
<th>1¢</th>
<th>1¢</th>
<th>18¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>10</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10¢</th>
<th>10¢</th>
<th>10¢</th>
<th>10¢</th>
<th>5¢</th>
<th>5¢</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25¢</th>
<th>25¢</th>
<th>10¢</th>
<th>10¢</th>
<th>10¢</th>
<th>10¢</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25¢</th>
<th>25¢</th>
<th>25¢</th>
<th>5¢</th>
<th>5¢</th>
<th>5¢</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5¢</th>
<th>5¢</th>
<th>5¢</th>
<th>5¢</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CANADA</th>
<th>CANADA</th>
<th>CANADA</th>
<th>CANADA</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number Sense 2-71
Count the money.

1. 10¢ 10¢ 5¢ 5¢ 5¢ 1¢
2. 25¢ 25¢ 10¢ 10¢ 5¢ 5¢
3. 25¢ 5¢ 5¢ 1¢ 1¢
4.
5.
6.
7.

Total: ___¢ ___¢ ___¢ ___¢ ___¢ ___¢ ___¢
Write the coin values from largest to smallest.
Count the money.

25¢

Bonus
Sindi has 2 quarters, 3 dimes, and 2 nickels.
How much money does she have?
Estimating and Counting Money

☐ Estimate the amount of money.
☐ Circle groups of 10¢ using blue.
☐ Count the money.

![Estimate: 40¢](image)

![Estimate: ___¢](image)

☐ Estimate the amount of money.
☐ Circle groups of 25¢ using red.
☐ Count the money.

![Estimate: _____¢](image)
☐ Estimate how much money.
☐ Circle all groups of 25¢ using red.
☐ Then circle all groups of 10¢ using blue.
☐ Count the money.

Estimate: 60¢

25¢ 50¢ 60¢ 70¢ 71¢ 72¢ 73¢

Estimate: _____¢

Estimate: _____¢
Does Aputik have enough money?

```
Yes / No

25¢

5¢

10¢

25¢

10¢

10¢

Yes / No

25¢

25¢

10¢

10¢

10¢

Yes / No

5¢

5¢

5¢

5¢

25¢

10¢

10¢

10¢

Yes / No

5¢

10¢

10¢

5¢

1¢

1¢

---

CA 2.2 AP Unit 17 p112-133 V3.indd   128
9/27/17   10:28:19 AM

128 Number Sense 2-72
```
Draw coins to make 12¢.

- Use 3 coins.
- Use 4 coins.

Draw coins to make 27¢.

- Use 3 coins.
- Use 5 coins.
- Use 6 coins.
- Use 7 coins.

Make each amount using the fewest coins.

- 8¢
- 15¢
- 20¢
- 60¢
- 82¢

Show how many different ways you can make 30¢ using dimes and nickels.
Adding Money

Mary adds coins to her bag. How much money does she have now?

41¢

51¢ 61¢ 66¢

25¢ 10¢ 5¢ 1¢

50¢

38¢

25¢

35¢

25¢ 25¢ 5¢ 5¢ 5¢ 5¢ 1¢

10¢ 10¢ 5¢ 5¢ 5¢ 1¢

50¢

48¢

5¢ 5¢ 1¢ 1¢ 1¢ 1¢ 1¢ 1¢
Braden adds coins to his bag. How much money does he have now?
Subtracting Money

Kim pays for stickers. How much money does she get back?

25¢ − 12¢ = 13¢

She gets 13¢ back.

Bonus

60¢ − 25¢ = 35¢

55¢ − 25¢ = 30¢

$1 − q¢ = $1 q¢
Write an addition or subtraction sentence.
Solve the problem.

<table>
<thead>
<tr>
<th>Eddy has 3 nickels and 1 dime.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kate has 2 quarters.</td>
</tr>
<tr>
<td>Eddy and Kate have _____¢ altogether.</td>
</tr>
</tbody>
</table>

Jasmin has 15¢.
She finds 3 dimes.
Jasmin now has _____¢.

Jun has 60¢.
He gives his sister a quarter.
Jun has _____¢ left.

Glen has 2 dimes and 3 nickels.
Ronin has 2 quarters.
Ronin has _____¢ more than Glen.

15 + 30 = 45