Contents

Unit 8 Patterns and Algebra: Variables, Expressions, and Equations

<table>
<thead>
<tr>
<th>Name</th>
<th>Lessons</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiz</td>
<td>Lessons PA5-8 to 12</td>
<td>1</td>
</tr>
<tr>
<td>Quiz</td>
<td>Lessons PA5-13 to 16</td>
<td>3</td>
</tr>
<tr>
<td>Test</td>
<td>Lessons PA5-9 to 16</td>
<td>5</td>
</tr>
</tbody>
</table>

Unit 9 Number Sense: Fractions

<table>
<thead>
<tr>
<th>Name</th>
<th>Lessons</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiz</td>
<td>Lessons NS5-34 to 37</td>
<td>8</td>
</tr>
<tr>
<td>Quiz</td>
<td>Lessons NS5-38 to 40</td>
<td>10</td>
</tr>
<tr>
<td>Quiz</td>
<td>Lesson NS5-44</td>
<td>12</td>
</tr>
<tr>
<td>Test</td>
<td>Lessons NS5-34 to 40, 44</td>
<td>14</td>
</tr>
</tbody>
</table>

Unit 10 Number Sense: Decimals

<table>
<thead>
<tr>
<th>Name</th>
<th>Lessons</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiz</td>
<td>Lessons NS5-46 to 48</td>
<td>17</td>
</tr>
<tr>
<td>Quiz</td>
<td>Lessons NS5-50 to 52</td>
<td>19</td>
</tr>
<tr>
<td>Quiz</td>
<td>Lessons NS5-53 to 55</td>
<td>21</td>
</tr>
<tr>
<td>Test</td>
<td>Lessons NS5-46 to 48, 50 to 55</td>
<td>23</td>
</tr>
</tbody>
</table>

© Copyright JUMP Math. All rights reserved. JUMP Math grants permission to any educational institution that receives directly from JUMP Math the quizzes, tests and associated answer keys bearing this notice (“Materials”), to use and copy such Materials, solely for the educational, non-commercial use by the educators employed by such institution and the students of such institution. These Materials may not be modified in any way, and this notice must not be modified, removed or distorted. These Materials may only be used for the benefit of such students, and may not be used for any other benefit, including revenue generation. No assignment or other license, whether implied or otherwise, is granted by JUMP Math to these Materials. This permission may be modified or withdrawn. Please visit jumpmath.org for the most up to date version of this permission before copying or using these Materials.
Unit 11 Number Sense: Using Decimals

<table>
<thead>
<tr>
<th>Name</th>
<th>Lessons</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiz</td>
<td>Lessons NS5-56 to 58</td>
<td>26</td>
</tr>
<tr>
<td>Quiz</td>
<td>Lessons NS5-59, 62</td>
<td>28</td>
</tr>
<tr>
<td>Test</td>
<td>Lessons NS5-56 to 59, 62</td>
<td>30</td>
</tr>
</tbody>
</table>

Unit 12 Geometry: Coordinates and Transformations

<table>
<thead>
<tr>
<th>Name</th>
<th>Lessons</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiz</td>
<td>Lessons G5-14, 15</td>
<td>33</td>
</tr>
<tr>
<td>Quiz</td>
<td>Lessons G5-17 to 20</td>
<td>35</td>
</tr>
<tr>
<td>Test</td>
<td>Lessons G5-15, 17 to 20</td>
<td>38</td>
</tr>
</tbody>
</table>

Unit 13 Geometry: 3-D Shapes

<table>
<thead>
<tr>
<th>Name</th>
<th>Lessons</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiz</td>
<td>Lessons G5-21 to 24</td>
<td>41</td>
</tr>
<tr>
<td>Test</td>
<td>Lessons G5-21 to 24</td>
<td>44</td>
</tr>
</tbody>
</table>

Unit 14 Measurement: Perimeter, Area, Volume, and Mass

<table>
<thead>
<tr>
<th>Name</th>
<th>Lessons</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiz</td>
<td>Lessons ME5-12 to 16</td>
<td>47</td>
</tr>
<tr>
<td>Test</td>
<td>Lessons ME5-12 to 16</td>
<td>49</td>
</tr>
</tbody>
</table>

Unit 15 Probability and Data Management: Likelihood and Probability

<table>
<thead>
<tr>
<th>Name</th>
<th>Lessons</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiz</td>
<td>Lessons PDM5-9, 12 to 15</td>
<td>52</td>
</tr>
<tr>
<td>Test</td>
<td>Lessons PDM5-9, 12 to 15</td>
<td>54</td>
</tr>
</tbody>
</table>
Introduction to Quizzes and Tests

We provide a quiz for, on average, every four lessons and a test covering the material of two to three quizzes, with one or two tests per unit. Students should need no more than 10 minutes to complete a quiz and no more than 45 minutes to complete a test.

Quizzes cover material both from lessons that are required to cover the curriculum and lessons labelled as recommended, while tests only cover material from lessons that are required to cover the curriculum.

Quizzes can be used as confidence builders and as formative assessment tools. A quiz should be administered after the last lesson that it covers has been taught. Tests are intended to be used as summative assessment tools. We recommend allowing students time to receive and internalize the feedback from all relevant quizzes before administering the test. The introduction to each unit in the Teacher Resource identifies which lessons are covered by each quiz and test.
1. Calculate the numerical expression.
 a) \((2 + 3) \times 4 = \)
 b) \(2 + (3 \times 4) = \)
 c) \(8 ÷ (6 - 2) = \)

2. Solve the equation by guessing and checking.
 a) \(4 + \square = 11\)
 b) \(\square - 7 = 6\)
 BONUS \(32 - \square = 17\)

3. Solve the equation by writing the unknown by itself.
 a) \(4 \times \square = 12\)
 b) \(\square - 8 = 9\)
 BONUS \(26 ÷ \square = 2\)

4. Write the mathematical expressions in words.
 a) \((5 + 3) \times 4\)
 b) \(2 + (7 \times 3)\)
 c) \(9 ÷ (4 + 2)\)

5. Replace the variable with the given number and evaluate.
 a) \((n + 4) \times 2, \ n = 3\)
 b) \(3 + (t \times 2), \ t = 4\)
 c) \(6 ÷ (w - 5), \ w = 8\)

6. Circle the part that is larger. Write the difference two ways to make an equation. Then solve the equation.
 a) 8 games
 6 books
 x fewer books than games
 b) \(x\) pens
 3 more pencils than pens
 5 pencils
 c) 7 apples
 4 fewer oranges than apples
 \(x\) oranges
Unit 8: Patterns and Algebra

Quiz (Lessons 8–12) — BC

1. a) 20
 b) 14
 c) 2

2. a) 7
 b) 13

BONUS

15

3. a) \(\square = 12 + 4 \)
 \(\square = 3 \)
 b) \(\square = 9 + 8 \)
 \(\square = 17 \)

BONUS

\(\square = 26 ÷ 2, \square = 13 \)

4. a) Add 5 and 3. Then multiply by 4.
 b) 2 more than the product of 7 and 3.
 c) 9 divided by the sum of 4 and 2.

5. a) \((3 + 4) \times 2\)
 \(= 7 \times 2 \)
 \(= 14 \)
 b) \(3 + (4 \times 2)\)
 \(= 3 + 8 \)
 \(= 11 \)
 c) \(6 ÷ (8 − 5)\)
 \(= 6 ÷ 3 \)
 \(= 2 \)

6. a) circle games
 \(8 − 6 = x\)
 \(x = 2\)
 b) circle pencils
 \(5 − 3 = x\)
 \(x = 2\)
 c) circle apples
 \(7 − 4 = x\)
 \(x = 3\)
1. Write the parts and how much each part costs. The write and solve an equation.
 A pen costs $9 and a pencil is $5 cheaper than the pen.
 a) How much does the pencil cost?
 b) How much do the pen and pencil cost altogether?

2. Write an equation to solve the problem.
 Ella read 23 pages on Monday. She read 6 pages in the morning.
 How many pages did she read in the afternoon?

3. Sara is 4 times as old as her brother. Sara is 6 years older than her brother. Finish the model to find out how old Sara is.

4. Draw a model for the story. Then solve the problem.
 There are 42 people on a school bus.
 There are five times as many children as there are adults.
 How many children and how many adults are on the bus?

5. Write an equation to solve the problem.
 Amit is twice as old as John. Clara is 3 years older than John. John is 11 years old.
 a) How old is Amit?
 b) How old is Clara?

BONUS►Phil collects quarters, dimes, and nickels. He has 40 coins in his collection.
 He has 18 quarters and 15 dimes. How many more dimes than nickels does Phil have?
Unit 8: Patterns and Algebra

Quiz (Lessons 13–16) — BC

1. a) pen: $9
 pencil: $x
 difference: $5
 \[9 - 5 = x \]
 \[x = 4 \]
 The pencil costs $4.

 b) pen: $9
 pencil: $4
 total: $x
 \[x = 9 + 4 \]
 \[x = 13 \]
 The pen and pencil cost $13 altogether.

2. \[x = 23 - 6 \]
 \[x = 17 \]
 Ella read 17 pages in the afternoon.

3. Teacher to check diagram.
 Sara is 8 years old.

4. Teacher to check diagram.
 There are 35 children and 7 adults on the bus.

5. a) \[a = 2 \times 11 \]
 \[a = 22 \]
 Amit is 22 years old.

 b) \[c = 11 + 3 \]
 \[c = 14 \]
 Clara is 14 years old.

BONUS

\[n + 15 + 18 = 40 \]
\[n = 7 \]
\[15 - 7 = 8 \]
Phil has 8 more dimes than nickels.
1. Solve the equation.
 a) \(w + 7 = 26 \)
 b) \(b \times 3 = 27 \)

 \(w = _______ \)
 \(b = _______ \)

2. Write an equation that tells you the relationship between the numbers in Column A and Column B.
 a) \[\begin{array}{|c|c|} \hline A & B \\ \hline 1 & 7 \\ 2 & 14 \\ 3 & 21 \\ \hline \end{array}\]
 b) \[\begin{array}{|c|c|} \hline A & B \\ \hline 1 & 9 \\ 2 & 10 \\ 3 & 11 \\ \hline \end{array}\]

3. Let \(b \) stand for the number of apples in each bag. Write an equation to find \(b \).
 a) 19 apples in total
 b) 15 apples in total

 Equation: _______________
 ___ apples in each bag

 Equation: _______________
 ___ apples in each bag

4. Write the mathematical expressions in words.
 a) \((3 + 1) \times 5\) __
 b) \(13 - 4 \times 3\) __

5. Replace the variable with the given number, then evaluate.
 a) \(2h - 5, \ h = 3\)
 b) \(3x + 7, \ x = 6\)
 c) \(9 - 4n, \ n = 2\)

BONUS ► Anna wants to buy a new MP3-player that costs $35. Anna has already saved $7. Anna decides to save equal amounts of money each month for the next four months. Write an expression to show the amount of money that she has to save each month.
6. Write and solve the equation for the problem.

There are 14 red cars. There are 7 fewer red cars than blue cars.
How many blue cars are there?

7. What is the size of each block?
 a)
 b)

 b)

8. Megan is 3 times as old as her brother. Megan is 8 years older than her brother. Finish the model to find out how old Megan is.

9. An apple slicer cuts apples into 6 equal pieces. There are 4 apples and 8 people sharing the apples. Each person gets the same number of pieces. How many pieces of apple does each person get?

10. There are twice as many orange pens as red pens. There are 8 more black pens than red pens. There are 4 red pens. How many pens are there altogether?

 BONUS ► Amy is arranging floor tiles. She uses 6 red tiles. There are 10 fewer red tiles than blue tiles and twice as many white tiles as the sum of red and blue tiles.
 a) How many tiles of each colour does Amy use?

 b) How many tiles does she use in total?
1. a) $w = 15$
 b) $b = 15$

2. a) $B = 3A$
 a) $B = A + 8$

3. a) $3b + 1 = 19$
 $b = 6$
 b) $3b + 3 = 15$
 $b = 4$

4. a) five times the sum of three and one
 b) thirteen minus the product of 4 and 3

5. a) $2(3) - 5$
 $= 6 - 5$
 $= 1$
 b) $3(6) + 7$
 $= 18 + 7$
 $= 25$
 c) $9 - 4(2)$
 $= 9 - 8$
 $= 1$

BONUS

$(35 - 7) + 4$

6. $b - 14 = 7$
 $b = 14 + 7$
 $b = 21$

7. a) 7
 b) 13

8. In the diagram, the bracket represents 8, and each block represents 4.
 Megan is 8 years old.

9. $4 \times 6 = 24$
 $24 ÷ 8 = 3$
 Each person gets 3 pieces.

10. $r = 4$
 $b = 4 + 8 = 12$
 $o = 2 \times 4 = 8$
 $4 + 12 + 8$
 $= 24$ pens altogether

BONUS

a) $r = 6$
 $b = 6 + 10 = 16$
 $r + b = 22$
 $w = 22 \times 2 = 44$

b) $6 + 16 + 44$
 $= 66$ tiles in total
Unit 9: Number Sense

Name: ______________________

Date: ________________

Quiz (Lessons 34–37) — BC

Using a ruler, complete the figure to make a whole.

a) \[
\begin{array}{c}
\frac{2}{5}
\end{array}
\]

b) \[
\begin{array}{c}
\frac{3}{4}
\end{array}
\]

2. Complete the sentences.

a) \[
\begin{array}{c}
\text{ of the shapes are shaded.}
\end{array}
\]

b) \[
\begin{array}{c}
\text{ of the shapes are squares.}
\end{array}
\]

\[
\begin{array}{c}
\text{ of the shapes are rectangles.}
\end{array}
\]

\[
\begin{array}{c}
\text{ of the shapes are not triangles.}
\end{array}
\]

BONUS ► Shade the strips to show that Kyle finished \(\frac{1}{2} \) of the homework questions, Zara finished \(\frac{3}{4} \) of the questions, and Nina finished \(\frac{12}{28} \) of the questions. Who finished the most questions? Order the fractions from greatest to least in the blanks below.

Kyle:

Zara:

Nina:

> >

3. Use the number line to order the fractions from least to greatest. Draw an \(\times \) to mark the position of each fraction.

\[
\begin{array}{cccccccccc}
0 & \frac{1}{9} & \frac{2}{9} & \frac{3}{9} & \frac{4}{9} & \frac{5}{9} & \frac{6}{9} & \frac{7}{9} & \frac{8}{9} & \frac{9}{9}
\end{array}
\]

\[
\begin{array}{cccccccccc}
\frac{5}{9} & \frac{3}{9} & \frac{7}{9} & \frac{2}{9} & \frac{9}{9} & \frac{1}{9}
\end{array}
\]

< < < < < <
Unit 9: Number Sense

Quiz (Lessons 34–37) — BC

1. Teacher to check.

2. a) \[
\begin{align*}
2 & \\
\frac{2}{5} & \\
\frac{2}{5}
\end{align*}
\]

b) \[
\begin{align*}
3 & \\
\frac{5}{7} & \\
\frac{7}{7}
\end{align*}
\]

BONUS

Zara finished the most questions.

\[
\frac{3}{4} > \frac{1}{2} > \frac{12}{28}
\]

3. \[
\begin{align*}
1 & \\
\frac{2}{9} & \\
\frac{3}{9} & \\
\frac{5}{9} & \\
\frac{7}{9} & \\
\frac{9}{9}
\end{align*}
\]
1. Circle the greater fraction.
 a) \(\frac{5}{6} \) or \(\frac{5}{9} \)
 b) \(\frac{7}{10} \) or \(\frac{9}{10} \)
 c) \(\frac{8}{11} \) or \(\frac{6}{11} \)
 d) \(\frac{12}{15} \) or \(\frac{12}{14} \)

2. Write any number in the blank that makes the relationship correct.
 a) \(\frac{4}{9} \) < \(\frac{9}{9} \)
 b) \(\frac{345}{347} \) > \(\frac{347}{347} \)
 c) \(\frac{3}{422} \) > \(\frac{422}{422} \)
 BONUS: \(\frac{999}{1000} \) < \(\frac{999}{999} \)

3. Order the fractions from least to greatest by considering the numerators and denominators.
 a) \(\frac{1}{6} \), \(\frac{1}{10} \), \(\frac{1}{9} \), \(\frac{1}{11} \)
 b) \(\frac{3}{16} \), \(\frac{3}{20} \), \(\frac{3}{5} \), \(\frac{3}{31} \)

4. Draw lines to cut the whole cake into more equal pieces. Fill in the numerators of the equivalent fractions.
 a) \(\frac{1}{2} \)
 b) \(\frac{4}{8} \)
 c) \(\frac{8}{16} \)

5. Use multiplication to find the equivalent fraction.
 a) \(\frac{2 \times 5}{5 \times 10} = \frac{10}{50} \)
 b) \(\frac{3 \times 4}{4 \times 28} = \frac{12}{112} \)
 c) \(\frac{7 \times 9}{9 \times 81} = \frac{63}{729} \)

6. Turn the fractions into fractions with the same denominator. Then compare the fractions. Show your answer using < or >.
 a) \(\frac{2 \times 2}{5 \times 7} \)
 b) \(\frac{4 \times 3}{9 \times 5} \)
 c) \(\frac{3 \times 5}{4 \times 9} \)

 = _____
 = _____
 = _____
 = _____
 = _____
 = _____

 so \(\frac{2}{5} \) < \(\frac{3}{7} \)
 so \(\frac{4}{9} \) < \(\frac{3}{5} \)
 so \(\frac{3}{4} \) < \(\frac{5}{9} \)
Unit 9: Number Sense

Quiz (Lessons 38–40) — BC

1. a) \(\frac{5}{6} \)
b) \(\frac{9}{10} \)
c) \(\frac{8}{11} \)
d) \(\frac{12}{14} \)

2. a) any number larger than 4
b) any number larger than 345
c) any number less than 3
BONUS any number less than 1000

3. a) \(\frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 6 \cdot 5 \cdot 2}{1} \)
b) \(\frac{31 \cdot 20 \cdot 16 \cdot 5 \cdot 3}{2} \)
c) \(\frac{3}{4} \)

4. Teacher to check drawings.
2, 4, 8

5. a) \(\times 2, \times 2, 5 \)
b) \(\times 7, \times 7, 21 \)
c) \(\times 9, \times 9, 63 \)

6. a) multiply by 7
\(\frac{14}{35} \)
multiply by 5
\(\frac{15}{35} \)
<

b) multiply by 5
\(\frac{20}{45} \)
multiply by 9
\(\frac{27}{45} \)
<

c) multiply by 9
\(\frac{27}{36} \)
multiply by 4
\(\frac{20}{36} \)
>
1. Describe the set of letters in at least three ways using the fraction $\frac{4}{8}$.

 C a N A d i a N

2. Write four equivalent fractions for the amount shaded in the picture.

 \[
 \text{ } = \text{ } = \text{ } = \text{ }
 \]

 BONUS ▶ Carl walked $\frac{10}{110}$ kilometres in one minute. Blanca walked $\frac{10}{120}$ kilometres in one minute.

Unit 9: Number Sense

Quiz (Lesson 44) — BC

1. Sample answer:
 \[\frac{4}{8} \] of the letters are uppercase.
 \[\frac{4}{8} \] of the letters are vowels.
 \[\frac{4}{8} \] of the letters are consonants.

2. \[
 \frac{1}{2}, \frac{2}{4}, \frac{4}{8}, \frac{8}{16}
 \]

BONUS

The denominator of the first fraction is smaller, so
\[\frac{10}{110} > \frac{10}{120} \]
So Carl walked farther and faster.
Unit 9: Number Sense

Test (Lessons 34–40, 44) — BC

1. Complete the sentence.

\[\text{of the shapes are shaded.} \]
\[\text{of the shapes are squares.} \]
\[\text{of the shapes are rectangles.} \]
\[\text{of the shapes are not triangles.} \]

2. Use the number line to order the fractions from least to greatest.
 Draw an \(\times \) to mark the position of each fraction.

\[\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\frac{0}{12} & \frac{1}{12} & \frac{2}{12} & \frac{3}{12} & \frac{4}{12} & \frac{5}{12} & \frac{6}{12} & \frac{7}{12} & \frac{8}{12} & \frac{9}{12} & \frac{10}{12} & \frac{11}{12} & \frac{12}{12} \\
\end{array} \]

\[\begin{array}{cccccccccccc}
\frac{3}{12} & \frac{1}{12} & \frac{9}{12} & \frac{4}{12} & \frac{11}{12} & \frac{7}{12} \\
\end{array} \]

3. Use each fraction twice to describe the set of shapes: \(\frac{1}{9}, \frac{4}{9}, \frac{5}{9} \).

4. What fraction of the letters in the word “Saskatchewan” are …
 a) vowels? \[\hspace{2cm} \]
 b) consonants? \[\hspace{2cm} \]
5. Use multiplication to find the equivalent fraction.
 a) \(\frac{3}{5} \times \frac{5}{5} = \frac{20}{20}\)
 b) \(\frac{5}{8} \times \frac{6}{6} = \frac{48}{48}\)
 c) \(\frac{8}{11} \times \frac{11}{11} = \frac{99}{99}\)

6. Explain why each picture does (or does not) show \(\frac{2}{5}\).
 a)
 b)
 c)

BONUS

7. Circle the greater fraction.
 a) \(\frac{8}{10}\) or \(\frac{7}{10}\)
 b) \(\frac{7}{9}\) or \(\frac{7}{8}\)
 c) \(\frac{16}{25}\) or \(\frac{21}{25}\)
 d) \(\frac{20}{25}\) or \(\frac{20}{23}\)

8. Order the fractions from least to greatest by considering the numerators and denominators.
 a) \(\frac{2}{7}\) \(\frac{2}{15}\) \(\frac{2}{13}\) \(\frac{2}{20}\) \(\frac{2}{10}\)
 b) \(\frac{7}{14}\) \(\frac{7}{11}\) \(\frac{7}{18}\) \(\frac{7}{9}\) \(\frac{7}{20}\)

9. Turn the fractions into fractions with the same denominator. Then compare the fractions. Show your answer using < or >.
 a) \(\frac{7}{8} \times \frac{4}{5} = \frac{28}{40}\)
 b) \(\frac{4}{7} \times \frac{7}{9} = \frac{28}{63}\)
 c) \(\frac{8}{9} \times \frac{6}{8} = \frac{48}{72}\)

 so \(\frac{7}{8}\) \(\frac{4}{5}\)
 so \(\frac{4}{7}\) \(\frac{7}{9}\)
 so \(\frac{8}{9}\) \(\frac{6}{8}\)
Unit 9: Number Sense

Test (Lessons 34–40, 44) — BC

1. a) \(\frac{6}{11} \)
 b) \(\frac{3}{11} \)
 c) \(\frac{5}{11} \)
 d) \(\frac{8}{11} \)

2. \(\frac{1}{12} \), \(\frac{3}{12} \), \(\frac{4}{12} \), \(\frac{7}{12} \), \(\frac{9}{12} \), \(\frac{12}{12} \)

3. Answers will vary.
 Sample answers:
 - \(\frac{1}{9} \) unshaded circles,
 - \(\frac{1}{9} \) shaded triangles,
 - \(\frac{4}{9} \) unshaded shapes,
 - \(\frac{4}{9} \) circles,
 - \(\frac{5}{9} \) shaded shapes,
 - \(\frac{5}{9} \) polygons

4. a) \(\frac{4}{12} \) or \(\frac{1}{3} \)
 b) \(\frac{8}{12} \) or \(\frac{2}{3} \)

5. a) \(\times 4, \times 4, 12 \)
 b) \(\times 6, \times 6, 30 \)
 c) \(\times 9, \times 9, 72 \)

6. a) yes, because 2 equal parts out of 5 are shaded
 b) no, because there are 6 equal parts
 c) no, because the parts are not equal

BONUS
 yes, because 2 equal parts out of 5 are shaded

7. Circle the following:
 a) \(\frac{8}{10} \)

8. a) \(\frac{2}{20} \), \(\frac{2}{10} \), \(\frac{2}{15} \), \(\frac{2}{13} \)
 b) \(\frac{7}{28} \), \(\frac{7}{14} \), \(\frac{7}{11} \)

9. a) multiply by 5
 multiply by 8
 multiply by 7
 b) multiply by 9
 multiply by 7
 c) multiply by 8
 multiply by 9

10. a) multiply by 5
 multiply by 8
 multiply by 9

COPYRIGHT © 2019 JUMP MATH: TO BE COPIED.
1. Write a fraction for the shaded part of the hundreds block. Then write the fraction as a decimal. Hint: Count by 10s for each column or row that is shaded.

a)

b) BONUS

2. Write the fraction as a decimal with 2 digits after the decimal point.

a) \(\frac{39}{100} = 0.____ ____ \)

b) \(\frac{4}{100} = 0.____ ____ \)

c) \(\frac{8}{10} = 0.____ \)

\= 0.____ ____

d) \(\frac{4}{10} = 0.____ \)

\= 0.____ ____

3. Cross out the equalities that are incorrect.

\(\frac{47}{100} = 0.47 \)

\(\frac{9}{100} = 0.9 \)

\(0.05 = \frac{5}{10} \)

\(0.60 = \frac{6}{10} \)

4. Fill in the blanks.

a) 53 hundredths = ____ tenths + ____ hundredths

b) 7 hundredths = ____ tenths + ____ hundredths

5. Estimate and mark the location of the decimals on the number line.

A. 0.83 B. 0.26 C. 0.95 D. 0.54 E. 0.79

[Number line with marks at 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
Unit 10: Number Sense
Quiz (Lessons 46–48) — BC

1. a) \(\frac{18}{100} = 0.18 \)
 b) \(\frac{71}{100} = 0.71 \)

BONUS
 \(\frac{91}{100} = 0.91 \)

2. a) 0.39
 b) 0.04
 c) 0.8
 d) 0.4

3. Cross out \(\frac{9}{100} = 0.9 \) and
 \(0.05 = \frac{5}{10} \).

4. a) 5, 3
 b) 0, 7

5. Teacher to check.
Unit 10: Number Sense

Name: ______________________

Date: ________________

1. Write the place value of the underlined digit.
 a) 35.8 ____________ b) 17.4 ____________ c) 950.81 ____________
 d) 0.7 ____________ e) 108.35 ____________ f) 71.92 ____________

2. Put a decimal point in the number so that the digit 7 has the value \(\frac{7}{10} \).
 a) 5970 b) 3567 c) 27 d) 679

3. Write the fraction as a decimal with three digits after the decimal point.
 a) \(\frac{345}{1000} = \) __ . __ __ __ b) \(\frac{807}{1000} = \) __ . __ __ __ c) \(\frac{52}{1000} = \) __ . __ __ __
 d) \(\frac{9}{10} = \) __ . __ __ __ e) \(\frac{87}{100} = \) __ . __ __ __ f) \(\frac{5}{1000} = \) __ . __ __ __

4. Write the decimal as a fraction with denominator 1000.
 a) 0.456 = \(\frac{1000}{1000} \) b) 0.097 = \(\frac{1000}{1000} \) c) 0.4 = \(\frac{1000}{1000} \) d) 0.108 = \(\frac{1000}{1000} \)

5. Mark the decimal or fraction on the number line with a dot and a letter.

 A. 0.67 B. 0.12 C. 0.05 D. \(\frac{43}{100} \) E. \(\frac{2}{100} \) BONUS► F. \(\frac{990}{1000} \)

6. Change all decimals to fractions with the denominator 100. Write the fractions in order from greatest to least.
 a) 0.42 0.5 0.4 b) 0.08 \(\frac{74}{100} \) 0.80
 ____________________________ ____________________________ ____________________________
 __________ > __________ > __________ __________ > __________ > __________

Unit Quizzes and Tests for Grade 5
1. a) tens
b) tenths
c) hundreds
d) ones
e) hundredths
f) tenths
2. a) 59.70
b) 356.7
c) 2.7
d) 6.79
3. a) 0.345
b) 0.807
c) 0.052
d) 0.900
e) 0.870
f) 0.005
4. a) 456
b) 97
c) 400
d) 108
5. Teacher to check.
6. a) \[
\begin{array}{ccc}
42 & 50 & 40 \\
100 & 100 & 100 \\
50 & 42 & 40 \\
100 & 100 & 100 \\
\end{array}
\]

b) \[
\begin{array}{ccc}
8 & 74 & 80 \\
100 & 100 & 100 \\
80 & 74 & 8 \\
100 & 100 & 100 \\
\end{array}
\]
1. Write equivalent fractions.
 a) \(\frac{1}{5} = \frac{10}{100} = \frac{20}{200} \)
 b) \(\frac{3}{5} = \frac{10}{10} = \frac{100}{100} \)
 c) \(\frac{4}{5} = \frac{10}{10} = \frac{100}{100} \)

2. Circle the greater number in the pair. Hint: First change all fractions and decimals to fractions with denominator 100.
 a) 0.37 \(\frac{2}{5} \)
 b) 0.49 \(\frac{1}{2} \)
 c) 0.81 \(\frac{4}{5} \)

3. Regroup so that each place value has a single digit.
 a) 5 ones + 14 tenths = _____ ones + _____ tenths
 b) 3 tenths + 17 hundredths = _____ tenths + _____ hundredths
 c) 0 tenths + 19 hundredths = _____ tenth + _____ hundredths

4. Add the decimals by lining up the decimal points. You may need to regroup.
 a) 0.8 + 0.64
 b) 1.27 + 3.45
 BONUS\(\quad 1.46 + 0.38 + 2.51 \)

5. Subtract the decimals on the grid.
 a) 0.75 - 0.34
 b) 6.23 - 3.15
 c) 3.46 - 0.52
Unit 10: Number Sense

Quiz (Lessons 53–55) — BC

1. a) 2, 20
 b) 6, 60
 c) 8, 80

2. a) Circle \(\frac{2}{5} \):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>40</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

 b) Circle \(\frac{1}{2} \):

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>49</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

 c) Circle 0.81,

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>81</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

3. a) 6, 4
 b) 4, 7
 c) 1, 9

4. a) 1.44
 b) 4.72

BONUS

4.35

5. a) 0.41
 b) 3.08
 c) 2.94
1. Mark the decimal or fraction on the number line with a dot and a letter.

 A. 0.83 B. 0.19 C. 0.02 D. \(\frac{73}{100} \) E. \(\frac{6}{100} \) F. \(\frac{9}{10} \)

2. Write the decimals as hundredths to compare the decimals. Then write < or > in the box.
 a) 0.6 < 0.58
 b) 0.06 < 0.60
 c) 0.81 > 0.9

3. Estimate and mark the location of the decimals on the number line.
 A. 0.92 B. 0.07 C. 0.30 D. 0.41 E. 0.84

4. Write the place value of the underlined digit.
 a) 432.8 b) 17.04 c) 9.81
 d) 601.73 e) 108.55 f) 71.49

5. Write the decimal as a fraction with denominator 1000.
 a) \(\frac{0.631}{1000} \) b) \(\frac{0.43}{1000} \) c) \(\frac{0.004}{1000} \) d) \(\frac{0.01}{1000} \)
6. Vicky thinks \(\frac{40}{100} \) is greater than 0.4 because 40 is greater than 4. Do you agree? Explain.

7. Write the numbers in order from least to greatest. Explain how you found your answer.

\[
0.28 \quad \frac{3}{4} \quad 0.7 \quad \frac{3}{5} \quad \frac{1}{2}
\]

8. Add the decimals by lining up the decimal points. You may need to regroup.

a) 5.72 + 0.26 \hspace{1cm} b) 0.7 + 3.45 \hspace{1cm} BONUS \hspace{0.5cm} 2.55 + 0.43 + 3.64

9. Tony made a fruit drink by mixing 0.48 L of juice with 0.63 L of ginger ale. How many more litres of ginger ale than juice did he use?
1. Teacher to check.

2. a) \[\frac{60}{100}, \frac{58}{100}\]
 \[0.6 > 0.58\]

 b) \[\frac{6}{100}, \frac{60}{100}\]
 \[0.06 < 0.60\]

 c) \[\frac{81}{100}, \frac{90}{100}\]
 \[0.81 < 0.9\]

3. Teacher to check.

4. a) tens

 b) hundredths

 c) ones

 d) hundreds

 e) tenths

 f) hundredths

5. a) 631

 b) 430

 c) 4

 d) 10

6. I do not agree with Vicky.
\[\frac{40}{100} = 0.4\]

7. \[0.28 < \frac{1}{2} < \frac{3}{5} < 0.7 < \frac{3}{4}\]

 Sample explanation:
 I wrote all the numbers as fractions with denominator 100:

 \[0.28 = \frac{28}{100}, \frac{3}{4} = \frac{75}{100}\]

 \[0.7 = \frac{70}{100}, \frac{3}{5} = \frac{60}{100}\]

 \[\frac{50}{100}\]

8. a) 5.98

 b) 4.15

 c) 6.62

9. \[0.63 - 0.48 = 0.15\] L
 Tony used 0.15 L more ginger ale than juice.
1. Write the amount in cent notation.
 a) $8.00 = _______
 b) $0.39 = _______
 c) $3.07 = _______

2. Write the amount in dollar notation.
 a) 547¢ = _______
 b) 9¢ = _______
 c) 1301¢ = _______

3. Write the amount in cent notation and then in dollar notation.
 a) 7 nickels = _______ = _______
 b) 4 quarters = _______ = _______
 c) 11 dimes = _______ = _______
 BONUS ► 5 toonies, 2 loonies, 3 quarters, and 1 dime = _______ = _______

4. Add or subtract. You will have to regroup.
 a) $15.03 − $12.95
 b) $32.16 + $24.85
 c) $90.00 − $82.50

5. Lynn has $45. If she buys a sweater for $24.50 and a book for $10.20, will she have enough money to buy another book for $10.35?

6. Round to the nearest whole number.
 a) 2.3 _______
 b) 5.7 _______
 c) 9.5 _______

7. Round to the nearest tenth. Underline the tenths digit first. Then put your pencil on the digit to the right (the hundredths digit). This digit tells you whether to round up or down.
 a) 6.43 _______
 b) 7.86 _______
 c) 3.15 _______
Unit 11: Number Sense

Quiz (Lessons 56–58) — BC

1. a) 800¢
 b) 39¢
 c) 307¢

2. a) $5.47
 b) $0.09
 c) $13.01

3. a) 35¢, $0.35
 b) 100¢, $1.00
 c) 110¢, $1.10

 BONUS
 1285¢, $12.85

4. a) $2.08
 b) $57.01
 c) $7.50

5. No. The sweater and the first book cost $24.50 + $10.20 = $34.70 altogether. Lynn will have $45 − $34.70 = $10.30 left, so she does not have enough to buy the other book.

6. a) 2
 b) 6
 c) 10

7. Teacher to check underlining.
 a) 6.4
 b) 7.9
 c) 3.2
Unit 11: Number Sense

Quiz (Lessons 59, 62) — BC

Name: ______________________

Date: ________________

1. Estimate by rounding to the nearest tenth. Then add or subtract.
 a) \(0.81 + 1.07 \approx \) ______________________
 b) \(5.79 - 1.42 \approx \) ______________________
 BONUS ► \(999.96 - 9.99 \approx \) ______________________

2. Estimate by rounding both numbers to the nearest tenth. Then use the grid to add or subtract.
 a) \(57.16 - 42.34\)
 b) \(108.01 + 58.85\)

3. Raj wants to buy 1 children’s ticket and 2 adult tickets for a bus ride. Children’s tickets cost $1.55 and adult tickets cost $3.25. He has $8. Does he have enough money?
 a) Estimate by rounding to the nearest tenth. Write “yes” or “no” in the blank.
 b) Calculate. Write “yes” or “no” in the blank.

 \(\)

 \(\)

 \(\)

 \(\)
Unit 11: Number Sense
Quiz (Lessons 59, 62) — BC

1. a) \(0.8 + 1.1 = 1.9\)
b) \(5.8 - 1.4 = 4.4\)

 BONUS

 \(1000 - 10 = 990\)

2. a) \(57.2 - 42.3 = 14.9\)
b) \(108.0 + 58.9 = 166.9\)

3. a) \(\$1.60 + \$3.30 + \$3.30 = \$8.20\)
 no

 b) \(\$1.55 + \$3.25 + \$3.25 = \$8.05\)
 no
1. Write the amount in cent notation.
 a) $9.02 = _____
 b) $0.18 = _____
 c) $15.70 = _____

2. Write the amount in dollar notation.
 a) 607¢ = _____
 b) 9¢ = _____
 c) 1465¢ = _____

3. Write the amount in cent notation and then in dollar notation.
 a) 8 nickels = _____ = _____
 b) 5 quarters = _____ = _____
 c) 9 dimes = _____ = _____

4. Add or subtract. You will have to regroup.
 a) $65.31 − $42.15
 b) $43.27 + $14.84
 c) $80.00 − $29.59

5. Round to the nearest whole number.
 a) 8.2 _____
 b) 15.6 _____
 c) 29.5 _____

6. Estimate by rounding to the nearest tenth. Then add or subtract.
 a) 86.44 + 2.37 = ______________________
 b) 15.68 − 2.51 = ______________________

7. Estimate by rounding both numbers to the nearest tenth. Then use the grid to add or subtract.
 a) 48.63 + 27.29
 BONUS ► 199.97 − 69.95
8. Emma wants to buy 2 children’s tickets and 1 adult ticket for a show. Children’s tickets cost $5.25 and adult tickets cost $10.25. She has $20. Does she have enough money?

a) Estimate by rounding to the nearest whole number. Write “yes” or “no” in the blank.

b) Calculate. Write “yes” or “no” in the blank.

If you rounded to the nearest tenth instead of the whole number in part a), would you have said Emma has enough money to pay for the tickets? Explain.
Unit 11: Number Sense

Test (Lessons 56–59, 62) — BC

1. a) 902¢
 b) 18¢
 c) 1570¢

2. a) $6.07
 b) $0.09
 c) $14.65

3. a) 40¢, $0.40
 b) 125¢, $1.25
 c) 90¢, $0.90

4. a) $23.16
 b) $58.11
 c) $50.41

5. a) 8
 b) 16
 c) 30

6. a) 86.4 + 2.4 = 88.8
 b) 15.7 – 2.5 = 13.5

7. a) 48.6 + 27.3 = 75.9

 BONUS
 200.0 – 70.0 = 130.0

8. a) $5 + $5 + $10 = $20, yes
 b) $5.25 + $5.25
 + $10.25 = $20.75, no
 c) No, because when rounded to the nearest tenth, the tickets cost
 $5.30 + $5.30 + $10.30 = $20.90, which is more than $20.
1. Translate the dot.
 a) 3 units left, 2 units up
 b) 5 units right, 3 units down

2. Slide the shape 4 units right and 2 units down.

3. Is the dashed line a line of symmetry?
 a) _______ b) _______ c) _______

BONUS► Draw at least 5 lines of symmetry on the regular octagon.
Unit 12: Geometry

Quiz (Lessons 14, 15) — BC

1. a)
 b)

2.

3. a) no
 b) yes
 c) no

BONUS
 Teacher to check for 5 of 8 lines shown below:

 ![Diagram of 8 lines]
1. Draw the reflections of the shape and points in the line.

![Reflections of a shape](image)

2. a) Extend the pattern by reflecting the shape in vertical lines.

![Extended pattern](image)

b) Draw the 12th shape in the pattern.

![12th shape in the pattern](image)

3. Draw the line of reflection or a translation arrow.

![Line of reflection or translation arrow](image)
4. Write the fraction of a turn each arrow has moved from start to finish.

a)

b)

c)

turn CCW

turn CW

5. Show what the figure would look like after the given rotation around the dot. First rotate the dark line, then draw the rest of the figure.

a)

b)

\[\frac{1}{4} \text{ turn clockwise} \]

\[\frac{1}{2} \text{ turn counter-clockwise} \]

6. Describe the transformation used to move the triangle from position 1 to position 2. The sides of each square in the picture are 1 unit long.

a)

b)

c)

Unit 12: Geometry

Quiz (Lessons 17–20) — BC

1. a)
 ![Diagram 1a]

 b)
 ![Diagram 1b]

2. a)
 ![Diagram 2a]

 b)
 ![Diagram 2b]

3. a)
 ![Diagram 3a]

 b)
 ![Diagram 3b]

BONUS

4. a) 1/4
 ![Diagram 4a]

 b) 3/4
 ![Diagram 4b]

 c) 3/4 turn CCW

5. a)
 ![Diagram 5a]

 b)
 ![Diagram 5b]

6. a) reflection in line M
 ![Diagram 6a]

 b) rotation: 1/4 turn
 CCW around point P
 ![Diagram 6b]

 c) translation: 1 unit right
 ![Diagram 6c]
Unit 12: Geometry

Test (Lessons 15, 17–20) — BC

1. Slide the shape 5 units left and 2 units up.

2. Can the pair of shapes be created by a translation? If so, describe the translation. If not, explain why not.
 a) ___
 b) ___

3. Draw the reflection of the shape by first finding the reflections of its vertices.
 a) ___
 b) ___
 BONUS ▲
4. Jodi made a pattern by alternating between translating and reflecting a shape.
 a) Continue the pattern.

 b) Draw the core of the pattern.

 c) Draw the 23rd shape in the pattern.

5. a) Draw the image after the given translation, reflection, or rotation.
 i) \(\frac{1}{4} \) turn clockwise around point \(P \)
 ii) reflect in line \(M \)
 iii) slide 3 units right, 2 units down

 b) Which way does the flag point now? Use N, E, S, W.
 i) The flag points ________\.
 ii) The flag points ________\.
 iii) The flag points ________\.

6. Describe one transformation that moves the triangle from position 1 to position 2.
 a) _____________________________
 b) _____________________________
1.

2. a) Yes, move 4 units right, 2 units down.
 b) No, because the shapes are not congruent.

3. a)
 b)

4. a) Teacher to check.
 b)
 c)

5. a) i)
 ii)
 iii)
 b) i) S
 ii) W
 iii) E

6. a) reflection in line 1

b) rotation: $\frac{1}{2}$ turn clockwise around point P
orrotation: $\frac{1}{2}$ turn counter-clockwise around point P
Unit 13: Geometry

Quiz (Lessons 21–24) — BC

1. Do the marked edges or faces intersect? Write “yes” or “no.” If they intersect, trace the edge or mark the vertex where they meet.

 a) b) c) d)
 _____ _____ _____ _____

2. Cross out the objects that are not prisms. Shade the bases of the triangular prisms. Circle the rectangular prisms.

 a) b) c) d) e) f) g) h) i) j) k)
 _______ _______ _______ _______ _______
 _______ _______ _______ _______ _______

BONUS► A pyramid has a 9-sided base.
 a) How many faces does the pyramid have? _________
 b) How many vertices does the pyramid have? _________
 c) How many edges does the pyramid have? _________

3. Ali makes a 3-D shape. Any two faces in the shape intersect. Can the shape be a prism?

4. Shade the base or bases. Then name the prism or pyramid.

 a) b) c) d) e) f) g) h) i) j) k)
 _______ _______ _______ _______ _______
 _______ _______ _______ _______ _______

 _______ _______ _______ _______ _______
 _______ _______ _______ _______ _______
Unit 13: Geometry
Quiz (Lessons 21–24) — BC

5. Are the shaded faces parallel, perpendicular, or neither?

a)

b)

c)

______________ ______________ ______________
Unit 13: Geometry

Quiz (Lessons 21–24) — BC

1. Teacher to check pictures.
 a) yes
 b) yes
 c) yes
 d) no

2. Teacher to check.

3. no

4. Teacher to check shading.
 a) pentagon-based pyramid
 b) triangle-based prism
 c) triangle-based pyramid
 d) pentagon-based prism

BONUS
 a) 10
 b) 10
 c) 18

5. a) parallel
 b) perpendicular
 c) neither
1. Do the marked edges or faces intersect? Write “yes” or “no.” If they intersect, trace the edge or mark the vertex where they meet.

 a) b) c) d)

2. Hannah finds a face in a triangular prism that intersects with every other face. What is the shape of this face? Explain how you know.

3. Shade the base or bases. Then name the prism or pyramid.

 a) b) c) d)

BONUS ► A 3-D shape has 11 vertices and 20 edges.

 a) Is it a pyramid or a prism? ______________
 b) How many sides does its base have? ______
 c) Explain how you know.
4. Imagine the shape is placed on a table. One face is shaded or one edge is darkened. Is it vertical, horizontal, or neither?

a) ___________________ b) ___________________ c) ___________________ d) ___________________

5. Are the shaded faces parallel, perpendicular, or neither?

a) ___________________ b) ___________________ c) ___________________
Unit 13: Geometry
Test (Lessons 21–24) — BC

1. Teacher to check pictures.
 a) yes
 b) no
 c) yes
 d) no

2. a rectangle
 Sample explanation: The triangular faces are bases and do not intersect each other.

3. Teacher to check shading.
 a) hexagon-based prism
 b) rectangle-based pyramid
 c) triangle-based prism
 d) pentagon-based pyramid

BONUS
 a) pyramid
 b) 10
 c) Sample explanation: In a pyramid, there is one more vertex than the number of sides in the base, and twice as many edges as sides in the base. In a prism, the number of vertices is always an even number.

4. a) horizontal
 b) vertical
 c) vertical
 d) horizontal

5. a) perpendicular
 b) neither
 c) parallel
1. Find the perimeter and area of the rectangle using the length and the width. Include the units.

 a) Length = 8 cm
 Width = 9 cm
 Perimeter = ______________________
 = ___________
 Area = ______________
 = ___________

 b) Width = 5 m
 Length = 7 m
 Perimeter = ______________________
 = ___________
 Area = ______________
 = ___________

2. Anna wants to use ribbon to decorate the edge of a rectangular box. The box is 60 mm long and 45 mm wide. She has 20 cm of ribbon. Is that enough? Explain how you know.

3. a) Estimate the length and the width of the rectangle in centimetres. Then estimate the perimeter.

 b) Measure the length and the width of the rectangle to the nearest tenth of a centimetre. Then calculate the perimeter.

BONUS ► Each square side is 2 cm long. Find the perimeter and the area of the shape.
Unit 14: Measurement
Quiz (Lessons 12–16) — BC

1. a) \[8 + 9 + 8 + 9\]
 \[= 34 \text{ cm}\]
 \[8 \times 9\]
 \[= 72 \text{ cm}^2\]

 b) \[5 + 7 + 5 + 7\]
 \[= 24 \text{ m}\]
 \[5 \times 7\]
 \[= 35 \text{ m}^2\]

2. \[60 + 45 + 60 + 45\]
 \[= 210 \text{ mm} = 21 \text{ cm}\]
 Anna does not have enough ribbon.

3. a) Answers will vary.
 Sample estimates:
 Length: 3 cm
 Width: 4 cm
 Perimeter: 14 cm

 b) Length: 3.1 cm
 Width: 3.8 cm
 Perimeter: 13.8 cm

BONUS
Perimeter: 28 cm
Area: 32 cm2
1. Write an addition equation to find the perimeter of the swimming pool. Include the units.

 a)

 b)

2. Find the missing sides. (The pictures are not drawn to scale.)

 a) Perimeter = 16 cm

 b) Perimeter = 12 m

 BONUS ▶ Perimeter = 36 m

3. Write an equation for the area of the rectangle. Then find the unknown length.

 a) Width = 3 cm

 Length = ℓ cm

 Area = 27 cm²

 BONUS ▶ Width = 10 m

 Length = ℓ m

 Area = 46 m²

4. Find the length and the area of the rectangle. Include the units.

 a) Width = 2 cm

 Perimeter = 14 cm

 Length = ________

 Area = ______________

 b) Width = 4 cm

 Perimeter = 20 cm

 Length = ________

 Area = ______________
Unit 14: Measurement

Test (Lessons 12–16) — BC

5. a) Draw two rectangles that have the same perimeter but different areas.

b) Mike thinks that a rectangle with a larger area than another rectangle will also always have a larger perimeter. Is he correct? Explain.

BONUS ▶ The length of a square field is about 5 cars. A car is about 4 m long.

 a) About how many metres long is the field? ________

 b) What is the perimeter of the field? about ________
1. a) \(4 + 7 + 4 + 7\)
 \[= 22 \text{ m}\]
 b) \(3 + 3 + 1 + 3 + 2 + 6\)
 \[= 18 \text{ m}\]

2. a) 5, 5
 b) 4, 4

BONUS

10

3. a) \(3 \times \ell = 27 \text{ cm}^3\)
 \[\ell = \frac{27}{3} = 9 \text{ cm}\]
 b) \(10 \times \ell = 46 \text{ m}^2\)
 \[\ell = \frac{46}{10} = 4.6 \text{ m}\]

4. a) 5 cm
 10 cm²
 b) 6 cm
 24 cm²

5. a) Sample rectangles:
 4 \times 1 and 3 \times 2
 b) He is not correct.
 Sample explanation:
 A 4 \times 1 rectangle
 and a 3 \times 2 rectangle
 have the same area
 but different
 perimeters.

BONUS

a) 20 m
 b) 80 m
1. Write the number of outcomes for the event.
 a) spinning A ______
 b) spinning B ______
 c) spinning D ______
 d) spinning a letter in “CANADA” ______
 e) spinning one of the first four letters of the alphabet ______

2. You are rolling a regular die with numbers from 1 to 6. Fill in the table. Write the probability as a fraction with the smallest numbers possible.

<table>
<thead>
<tr>
<th>Event</th>
<th>Number of Outcomes</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Rolling a 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Not rolling a 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) Rolling an odd number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. a) If you spin the spinner 6 times, how many times do you expect it to land on each colour?
 yellow ______
 blue ______
 red ______

 b) If you spin the spinner 12 times, how many times do you expect it to land on each colour?
 yellow ______
 blue ______
 red ______

 BONUS ► If John spins the spinner 30 times, which tally chart is he most likely to get? ______

 A. Yellow | Blue | Red
 | |||| | |||| | |||| |

 B. Yellow | Blue | Red
 | || | |||| | |||| |

 C. Yellow | Blue | Red
 | |||| | |||| | |||| |
Unit 15: Probability and Data Management

Quiz (Lessons 9, 12–15) — BC

1. a) 2
 b) 1
 c) 0
 d) 3
 e) 4

2. a) $\frac{1}{6}$
 b) $\frac{5}{6}$
 c) $\frac{3}{6} \div \frac{1}{2}$

3. a) 1, 2, 3
 b) 2, 4, 6
 BONUS
 B
1. How many outcomes are there in total? How many blue outcomes are there?
 a) ______ outcomes b) ______ outcomes
 _____ blue outcomes _____ blue outcomes

2. a) You are rolling a regular die with numbers from 1 to 6. Fill in the table. Write the probability as a fraction with the smallest numbers possible.

<table>
<thead>
<tr>
<th>Event</th>
<th>Number of Outcomes</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Rolling a 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ii) Not rolling a 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iii) Rolling an even number</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) If you roll the die 30 times, how many times do you expect to …
 i) roll a 1? ______ BONUS ➤ roll a 3 or 6? ______

3. a) How many times do you expect grey when you spin the spinner …
 i) 5 times? ______ ii) 10 times? ______ iii) 15 times? ______

b) How many times do you expect white when you spin the spinner …
 i) 5 times? ______ ii) 10 times? ______ iii) 15 times? ______

c) Is there an equal chance of landing on white or grey? ________

BONUS ➤ If you spin the spinner 30 times, which tally chart are you most likely to get? ______
4. Write numbers on the spinner for the given probability

 a) The probability of spinning a 2 or 3 is $\frac{3}{5}$.
 b) The probability of spinning an odd number is $\frac{1}{2}$.

5. Alice and Liz play a game with a die. If they roll 2 or 5, Alice wins. If they roll 3 or 6, Liz wins.
 Is the game fair? ______ Explain. __
 __
 __
1. a) 6
 b) 5
2. a) i) $\frac{1}{6}$
 ii) $\frac{5}{6}$
 iii) $\frac{3}{6} = \frac{1}{2}$
 b) i) 5
 BONUS
 10
3. a) i) 2
 ii) 4
 iii) 6
 b) i) 3
 ii) 6
 iii) 9
 c) no
 BONUS
 C
4. Answers will vary.
 Sample answers:
 a)
 b)
5. yes
 Alice and Liz have the same probability of winning
 $\left(\frac{2}{6} = \frac{1}{3}\right)$.