Place Value – Ones, Tens and Hundreds

Goals: Students will identify the place value of digits in 2- and 3-digit numbers.

Prior Knowledge Required: Number Words — one, ten, hundred— and their corresponding numerals

Vocabulary: the numbers from 1–10, both the sounds and the numerals

Photocopy the BLM “Place Value Cards” and cut out the three cards. Write the number 321 on the board, leaving extra space between all the digits, and hold the “ones” card under the 3.

ASK: Did I put the card in the right place? Is 3 the ones digit? Have a volunteer put the card below the correct digit. Invite volunteers to position the other cards correctly. Cards can be affixed to the board temporarily using tape or sticky tack.

Now erase the 3 and take away the hundreds card. ASK: Are these cards still in the right place? Write the 3 back in, put the hundreds card back beneath the 3, erase the 1, and remove the ones card. ASK: Are these cards still in the right place? Have a volunteer reposition the cards correctly. Repeat this process with 31 (erase the 2).

Write 989 on the board and ask students to identify the place value of the underlined digit. (NOTE: If you give each student a copy of the BLM “Place Value Cards,” individuals can hold up their answers. Have students cut out the cards before you begin.) Repeat with several 2- and 3-digit numbers that have an underlined digit.

Vary the question slightly by asking students to find the place value of a particular digit without underlining it. (EXAMPLE: Find the place value of the digit 4 in the numbers: 401, 124, 847.) Continue until students can identify place value correctly and confidently. Include examples where you ask for the place value of the digit 0.

Then introduce the place value chart and have students write the digits from the number 231 in the correct column:

<table>
<thead>
<tr>
<th></th>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 231</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Do more examples together. Include numbers with 1, 2, and 3 digits and have volunteers come to the board to write the numbers in the correct columns.

Extensions:

1. Teach students the Egyptian system for writing numerals, to help them appreciate the utility of place value.

 1 = | (stroke)
 10 = (arch)
 100 = ☀ (coiled rope)
Write the following numbers using both the Egyptian and our Arabic systems:

234 ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃꜃

848 ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃꜃

423 ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃

Invite students to study the numbers for a moment, then ASK: What is different about the Egyptian system for writing numbers? (It uses symbols instead of digits. You have to show the number of ones, tens, and so on individually—if you have 7 ones, you have to draw 7 strokes. In our system, a single digit (7) tells you how many ones there are.) Review the ancient Egyptian symbols for 1, 10, and 100, and ask students to write a few numbers the Egyptian way and to translate those Egyptian numbers into regular numbers (using Arabic numerals). Emphasize that the order in which you write the symbols doesn’t matter:

234 ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃꜃ = ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃ ꜃꜃꜃

ASK: Does the order in which you write regular digits matter? Is 234 the same as 423? In the Egyptian way, does the value of a symbol depend on its place? In our way, does the value of a digit depend on its place? Are the ones, tens and so on always in the same place in our system? In the Egyptian system? Why is our way called a place value system?

Have students write a number that is really long to write the Egyptian way (EXAMPLE: 798). ASK: How is our system more convenient? Why is it helpful to have a place value system (i.e. the ones, tens, and so on are always in the same place)? Having a place value system allows you to use the same symbol to mean many different values. The digit 7, for example, can mean 7 ones, 7 tens or 7 hundreds depending on where it is in the number.

Students might want to invent their own number system using the Egyptian system as a model.

2. Have students identify and write numbers given specific criteria and constraints.
 a) Write a number between 30 and 40.
 b) Write an even number with a 6 in the tens place.
 c) Write a number that ends with a zero.
 d) Write a 2-digit number.
 e) Write an odd number greater than 70.
 f) Write a number with a tens digit one more than its ones digit.

Harder
 g) Which number has both digits the same: 34, 47, 88, 90?
 h) Write a number between 50 and 60 with both digits the same.
 i) Find the sum of the digits in each of these numbers: 37, 48, 531, 225, 444, 372.
 j) Write a 2-digit number where the sum of the digits is 11.
 k) Write a 2-digit number where the digits are the same and the sum of the digits is 14.
 l) Write a 3-digit number where the digits are the same and the sum of the digits is 15.
Bonus:
Is there a 2-digit number satisfying the same conditions?

m) Which number has a tens digit one less than its ones digit: 34, 47, 88, 90?

n) Write a 2-digit number with a tens digit eight less than its ones digit.

o) Write a 3-digit number where all three digits are odd.

p) Write a 3-digit number where the ones digit is equal to the sum of the hundreds digit and the tens digit.

Make up more such questions, or have students make up their own.
NS3-2 Place Value

Goals: Students will understand the value of digit in 2-, and 3-digit numbers.

Prior Knowledge Required: Place Value: Ones, Tens, Hundreds

Vocabulary: ones, tens, and hundreds digit, value

Write 836 on the board. SAY: The number 836 is a 3-digit number. What is the place value of the digit 8? (If necessary, point to each digit as you count aloud from the right: ones, tens, hundreds). SAY: The 8 is in the hundreds place, so it stands for 800. What does the digit 3 stand for? (30) The 6? (6)

Explain that 836 is just a short way of writing 800 + 30 + 6. The 8 actually has a value of 800, the 3 has a value of 30, and the 6 has a value of 6. Another way to say this is that the 8 stands for 800, and so on.

ASK: What is 537 short for? 480? 35? 601? Write out the corresponding addition statements for each number (also known as the expanded form).

ASK: What is the value of the 6 in 608? In 306? In 762? In 506?

ASK: In the number 831, what does the digit 3 stand for? The 1? The 8?

ASK: What is the value of the 0 in 340? In 403? In 809? Emphasize that 0 always has a value of 0, no matter what position it is in.

ASK: In the number 856, what is the tens digit? Ones? Hundreds? Repeat for 350, 503, 455, 770, 820.

Write the following numbers on the board: 350, 503, 435, 537, 325, 753. Ask students to identify which digit, the 5 or the 3, is worth more in each number. Students should be using the phrases introduced in the lesson—stands for, has a value of, is short for. (EXAMPLE: In 350, the 5 stands for 50 and the 3 stands for 300, so the digit 3 is worth more.)

Extension: If your students are familiar with the concept “how many times more”, ASK: What is the value of the first 1 in the number 11? What is the value of the second 1? How many times more is the first 1 worth than the second 1? Repeat with more numbers in which the digit 1 is repeated (EXAMPLES: 131, 110, 101, 211, 171).
Writing and Reading Number Words

Goals: Students will read and write number words to twenty and multiples of ten up to ninety.

Prior Knowledge Required: Reading and writing number words to ten
Place value (ones and tens)
Saying the alphabet

Vocabulary: numeral, number word, ones and tens digits

Write the following words on the board, all in a row:
eighteen thirteen seventeen sixteen nineteen fifteen

Ask the class to read the words out loud together and then ask volunteers to write the corresponding numerals under the words.

ASK: What number does the word “teen” remind you of? Guide them by asking them to look at the letters—is it spelled almost the same as a number they know? Tell them that eighteen is 8 + 10 = 18. ASK: Where can you see “eight” in eighteen? Where can you see a word that looks like “ten” in the word eighteen?

Have volunteers fill in the blanks with the correct number words:
a) fourteen = ________ + ten b) seventeen = ________ + seven
c) eighteen = ________ + ________ d) nineteen = ________ + ________
e) thirteen = ________ + ________ f) fifteen = ________ + ________
g) ________ = six + ten h) twelve = ________ + ________
i) eleven = ________ + ________

Have individual students write the missing words in their notebooks:
a) sixteen = ________ + ten b) seventeen = ________ + ten
c) nineteen = nine + ________ d) thirteen = ________ + ten

e) fourteen = ________ + four f) fifteen = ________ + ten

Have student volunteers circle the beginning letters that are the same.
a) six sixteen b) five fifteen c) nine nineteen
d) four fourteen e) three thirteen f) two twelve

Then, for each pair above, have students write the correct numerals in their notebooks and to circle the digits that are in common.

Repeat the above exercise with ending letters instead of beginning letters for the following pairs.
a) thirteen fourteen b) seventeen eighteen c) nineteen fifteen

Then write on the board: twenty = 20 two = 2
ASK: What two beginning letters do those words have in common? (tw) What digit is in both numbers? (2)
Write on the board: thirty. ASK: Can anyone think of a word for a 1-digit number that starts with the same two letters? (three) Then write: thirty = 0 ___ ___ three = 3
Have a volunteer fill in the blank.

Write: forty = ___0___ fifty = 0 ___ ___ thirty = sixty =
Have volunteers fill in the blanks by looking carefully at the beginning letters and asking themselves what one-digit number those letters remind them of.

ASK: What ones digit do these numbers all have? What letter do the words all end with? Tell them that any number word ending with “y” will always mean a number having ones digit 0.

Ask volunteers to guess how the following number words are written as numbers:
 eighty ninety seventy
Challenge them to find a 2-digit number having ones digit 0 whose number word doesn't end with “y”. (10)

Have students write the numerals for the following number words individually:
 a) thirty thirteen three b) twenty two twelve
 c) four fourteen forty d) eighteen eighty eight
 e) seven ninety thirteen e) eighty nine fourteen
 f) nineteen sixty forty f) forty fifteen twelve eight

Have students write individually the number word ending for these words:
 a) 30 = thir____ b) 20 = twen______ c) 13 = thir____
 d) 17 = seven____ e) 40 = for______ f) 80 = eigh____
 g) 18 = eigh____ h) 19 = nine______ i) 90 = nine___

Finally, have students write the full number words:
 a) 20 = _______ b) 19 = _______ c) 90 = _________ d) 17 = __________
 e) 13 = _______ f) 80 = _______ g) 50 = _________ h) 15 = __________

Activity: On the web-site: http://www.funbrain.com/numwords/index.html students can use Method 1 to write the number word in the correct place on the cheque or use Method 2 to read the number word and write the correct numeral. You may choose between numbers from 0 to 10, 0 to 100, 0 to 1000 or 0 to 10 000, depending on the level of your students.

Extensions:
1. Provide the BLM “Number Word Search.” Encourage students to use the message they find after finishing the puzzle as a way to check that they did the puzzle correctly.

2. Write the alphabet on the board with enough spacing between the letters to circle some of them.

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 Write the word “act” on the board and ask a volunteer to circle, in the list, the letters that appear in the word “act”. ASK: Are the letters in the same order in the word “act” as they are in the alphabet?
Have another student, using a different colour of chalk, circle the letters from the word “sun”.
ASK: Are the letters in the same order in the word “sun” as they are in the alphabet? What order do they appear in the alphabet? (n-s-u). Have students decide whether or not each of the following words are written alphabetically: bat, box, cat, mom, snow, most, now, win, lose, knot, knots, stone, ghost. Challenge students to find the longest alphabetical word that they can.

Tell your students that you know that since “on” is not alphabetical, you know that the following words cannot be alphabetical either: pony, money, gone, only. Ask them to explain your thinking.

Then make the connection to number words: Are any of the number words from one to ten written alphabetically? Eleven to twenty? Did they need to check all the number words from eleven to twenty? Is there a sequence of letters common to many of the number words? (teen is in many of them and is not alphabetical, so we don’t even need to check thirteen to nineteen)

Which of the following multiples of ten is written alphabetically?
- a) ten
- b) twenty
- c) thirty
- d) forty
- e) fifty
- f) sixty

3. Make a chart on the board with headings as follows:
3 letters 4 letters 5 letters 6 letters 7 letters 8 letters 9 letters

Have student volunteers write number words that fit in each column. Students should use number words from zero to twenty as well as multiples of ten up to ninety (thirty, forty, and so on to ninety). When most words are on the list, draw the following puzzle on the board:

```
FIVE
```

Tell students that we want to solve this puzzle using number words. Point to the vertical group of 3 squares and ask students if the word FIVE will fit. Why not? How many letters does the word need to have to fit? Refer your students to the list of 3-letter words they made and ask if there are any they missed.

THEN SAY: How many letters should the other word have? Repeat the chart for words with 4 letters (zero, four, five, nine).

Then tell students that one of the letters from the 3-letter word has to be the same as one of the letters from the 4-letter word. Ask if they can tell which letter from each word needs to overlap the other word. Have a volunteer circle the second letter from each 3-letter word and have another volunteer circle the first letter from each 4-letter word. Tell them that the 2nd letter from the 3-letter word is either n, w, i or e and that the 1st letter from the 4-letter word is either f, f or n. Tell them that if there are going to be words that fit in the puzzle, there had better be a letter in both lists. What letter is in both lists? (n) Which 3-letter word has n as its second letter? (one) Which 4-letter word starts with n? (nine) Write the words into the puzzle for them. Below are more puzzles (with the answers in brackets) your students can practice with.
4. Give students the BLM “Number Words Crossword Puzzle”.

5. Give students the BLM “Crossword Without Clues”.

6. Hand out the BLM “Recognizing Number Words”. The sheet asks students to circle the number words and to cross out the words that only sound like number words. Have a copy of the BLM on the board or overhead projector. Read the page out loud and point to the words as you say them. Give lots of hints. For example, “Eight children ate pie”. What were the people in this sentence doing? Were they sleeping, playing, eating or working? What were they eating? How many children ate pie?” Repeat the sentence several times so that all students can see that “eight” is the number word and “ate” only sounds like a number word. Remind the students that they should circle the number words and cross out the words that only sound like number words. When a word sounds like a number word other than the one in the sentence, students will benefit from hearing you read the sentence out loud and then saying some of the number words from one to ten and then repeating the sentence out loud as often as necessary. When all students have correctly done this sheet, hand out the BLM “Spelling Number Words” and have students look at their completed sheet to answer the questions. This sheet will give students a taste of how they can use the context of words to figure out the correct spelling. It will also show them that some words that sound the same can be spelled differently.
Writing Numbers

Goal: Students will read and write number words up to nine hundred ninety-nine.

Prior Knowledge Required: Reading and writing number words to twenty and multiples of ten to ninety

Vocabulary: numeral, number word, digit

Write “twenty” on the board and ask a volunteer to write the corresponding numeral. Ask them what number they think the number word “twenty-three” means. Can they think of an addition sentence from this word? \((20 + 3 = 23)\) Repeat for twenty-seven and twenty-one. Have students individually write the numbers for the following words:

- twenty-two
- twenty-five
- twenty-nine
- twenty-six
- twenty-eight
- twenty-four

Then write: thirty-six. SAY: if thirty means 30 and six means 6, what number do you think thirty-six means? What addition sentence can you write from that? \((30 + 6 = 36)\) To help them find 30 + 6, provide a number line or use a metre stick as a number line. Show them where 30 is on the number line so that they just have to move ahead six places.

Have a volunteer write the number for thirty-five with the addition sentence \((35 = 30 + 5)\), then have students write the numbers with addition sentences for each number word below:

- thirty-three
- thirty-two
- thirty-eight
- thirty-four

Provide them with a number line so that they can see how to add the numbers.

Show them where to find 10, 20 and 30 on the number line and then challenge them to find 40 on the number line. Have a volunteer write the 2-digit number "forty-seven" on the board by looking at a number line and adding the two parts of the number they see. Summarize to the class how the volunteer is finding the number 40 and then adding 7 to find 47. Repeat: thirty-six, twenty-seven, forty-two, thirty-one, forty-five, fifty-four.

Write the number sentences on the board:

\[
\begin{align*}
73 &= 70 + 3 \\
32 &= 30 + 2 \\
54 &= 50 + 4 \\
61 &= 60 + 1 \\
15 &= 5 + 10 \\
18 &= 8 + 10 \\
13 &= 3 + 10 \\
16 &= 6 + 10 \\
\end{align*}
\]

- seventy-three
- thirty-two
- fifty-four
- sixty-one
- fifteen
- eighteen
- thirteen
- sixteen

If available, use an overhead projector and write the parts in bold in a different colour. Point to each question and ASK: Where do you see the first digit of the number in the number word – at the beginning or at the end? Which numbers have the first digit at the beginning? (twenty and higher) Which numbers have the first digit at the end? (thirteen to nineteen).
When you write twenty-seven, where do you see the first digit in the number word? Where do you see the last digit? Have them compare this with the number word seventeen. Tell them that number words for numbers twenty and higher are a bit different from what they’ve seen so far because the first digit is read first and the last digit is read last. Have students individually write the numbers for the following number words:

- thirty-eight
- forty-five
- twenty-six
- thirty-four
- fifty-one
- fifty-four
- sixty-seven
- eighty-nine
- seventy-four
- ninety-one
- eighty-eight
- forty-two

Then have students write numerals for number words between zero and ninety-nine:

- twenty-eight
- eighteen
- sixteen
- four
- forty
- forty-three
- zero
- fifty
- fifty-eight
- thirteen
- twelve
- nineteen
- twenty-nine
- six
- fifteen
- thirty-four
- thirty-one
- eleven
- five

Have students write number words for numerals between 0 and 99:

- a) 41
- b) 32
- c) 90
- d) 9
- e) 89
- f) 74
- g) 99
- h) 0
- i) 50
- j) 25
- k) 17
- l) 11

Invite students to find any mistakes in the way the following number words are written and to correct them (some are correct):

- forty-zero
- forty-three
- twenty-eight
- thirty-nine
- eight-five

Summarize the process for writing numbers between 20 and 99: You can write the 2-digit number by writing the word for the first digit times ten, a hyphen, and then the word for the second digit, as long as it isn’t zero. If the second digit is zero, you write only the word for the first digit times ten.

EXAMPLE: 35 = 3 x 10 + 5 and is written as thirty-five, but 30 is written as thirty, not thirty-zero.

ASK: How is writing the number words for 11 to 19 different? (They don’t follow the same pattern.) Write the number words for 11 through 19 on the board and invite students to look for patterns and exceptions (eleven and twelve are unique; the other numbers have the ending “teen”).

Once students have mastered writing numbers up to 99, tell them that writing hundreds is even easier. There’s no special word for three hundreds like there is for three tens:

- 30 = 10 + 10 + 10 = thirty but
- 300 = 100 + 100 + 100 = three hundred (not three hundreds)

SAY: You just write what you see: three hundred. There’s no special word to remember.

Have students write the number words for the 3-digit multiples of 100: 200, 300, 400, and so on. Remind them not to include a final “s” even when there is more than one hundred.

Tell students that they can write out 3-digit numbers like 532 by breaking them down. Say the number out loud and invite students to help you write what they hear: five hundred thirty-two. Point out that there is no dash between “five” and “hundred.” Have students practice writing number words for many 3-digit numbers.

EXAMPLES: 134, 761, 898, 740, 500, 601. Emphasize that the word “and” should not appear: 301 is written as “three hundred one” not as “three hundred and one.”

Write some typical text from signs and banners and have students replace any number words with numerals and vice versa.
EXAMPLES:

a) Montreal 181 km

b) Speed Limit – 110 km/h

c) Max. Height 3 m

d) Seventy-Four Queen Street

e) Saskatoon next four exits

f) Bulk Sale! Buy ten for the price of five!

g) Highway 61

h) Bus Stop: Route 18

i) Montreal Canadiens –

24 Stanley Cup Titles!

j) Top Racing Broom for Witches and Wizards –

only $599!

Then have students individually write the correct number words in the following sentences:

a) There are ______ months in a year.

b) There are ______ days in a week.

c) There are (52) ______ weeks in a year.

d) February normally has _______ days.

e) A year normally has ______ days.

f) A leap year has _______ days.

Then have students write number words that make sense:

a) There are _______ girls and _____ boys in grade ______ at my school.

b) My house is about _______ city blocks from my school.

c) I can run ______ km in _______ minutes

d) My teacher is about _______ years old.

e) There are about _______ days in summer vacation.

f) My birthday is in about _______ days from now.
Goal: Students will practice representing numbers with base ten materials.

Prior Knowledge Required: Place value
Base ten materials

Vocabulary: digit, ones digit, tens digit, hundreds digit, ones block, tens block, hundreds block

Photocopy the BLM “Hundreds Chart and Base Ten Materials” onto a transparency if available. Demonstrate how to find $3 + 4$ by taking 3 ones blocks and then another 4 ones blocks and placing them on the chart in order, so that the last block is on square 7. ASK: How can I find $13 + 5$ by using ones blocks and the hundreds chart?

ASK: How is the counting already done for them when they put the ones blocks on in order? Emphasize that they can see the answer by looking under the last ones block.

Tell your students that instead of using ten ones blocks to cover a row, you find it easier just to use one bigger block. Show them a tens block and ask if anyone remembers what the block is called.

Provide your students with the BLM “Hundreds Charts” as well as 10 tens blocks and 9 ones blocks each. Have students use 3 tens blocks and 5 ones blocks and cover the squares in order. The hundreds charts were drawn to be 10 cm by 10 cm so that a ones block will cover a grid square exactly. ASK: How many squares are covered? How do you know? (They should look under the last ones block to see the number 35.) Repeat for several examples. (41, 23, 59, 74, 99) Then ask your students what number they get if they use two tens blocks and no ones blocks (20). 5 tens blocks? 7 tens blocks? 10 tens blocks?

Tell your students that we used a tens block instead of ten separate ones blocks. ASK: What can we use instead of 10 tens blocks? (a hundreds block)

Give your students 2 hundreds blocks to add to their 10 tens blocks and 9 ones blocks. ASK: What number do you get if you place a hundreds block on the first hundreds chart and then 3 tens blocks and 7 ones blocks in order on the next hundreds chart? Repeat with:

- a) 1 hundreds blocks, 5 tens blocks, 4 ones blocks
- b) 1 hundreds block, 6 tens blocks, 2 ones blocks
- c) 1 hundreds blocks, 7 tens blocks, 5 ones blocks
- d) 1 hundreds blocks, 3 ones blocks
- e) 1 hundreds blocks, 2 tens block, 2 ones block
- f) 1 hundreds blocks, 1 tens block
- g) 1 hundreds block, 3 tens blocks
- h) 2 hundreds blocks.

Then show models of base ten blocks without using the hundreds chart and have students tell you what number is represented. EXAMPLES: 3 hundreds blocks, 4 tens blocks and 2 ones blocks; 5 hundreds blocks and 8 ones blocks.
Now write only the expanded form and have students tell you what number is represented:

a) 7 hundreds + 5 tens + 3 ones
b) 9 hundreds + 0 tens + 6 ones
c) 8 hundreds + 1 ten + 1 one
d) 4 hundreds + 7 tens + 0 ones

Have your students write out the expanded form from the numerals.
EXAMPLE: 790 = 7 hundreds + 9 tens + 0 ones.

Demonstrate drawing a base ten model for 145 on grid paper:

Shade the blocks and ASK: How many little squares are shaded altogether? (145) Have students draw base ten models for other 2- and 3-digit numbers: 45, 60, 74, 104, 251, 300, 260.

Activities:

1. Give your students ones, tens, and hundreds blocks. Students might work in teams (with each team scoring a point for each right answer). Students might also sketch their answers (so you can verify that they have successfully completed the work):

 ![Base ten blocks diagram]

 Hundreds block **Tens block** **Ones block**

 Instruction:

 a) Show 17, 31, 252, etc. with base ten blocks.
 b) Show 22 using exactly 13 blocks.
 c) Show 31 using 13 blocks.
 HINT: for b and c: Start with a standard model and trade for blocks of equal value.
 Harder
 d) Show 315 using exactly 36 blocks.

Extension: Change the order of the words hundreds, tens and ones and have students fill in the blanks.
EXAMPLE: 793 = ____ tens + ____ hundreds + ___ ones
Place Value Cards

- Ones
- Tens
- Hundreds
Number Word Search

Find:

<table>
<thead>
<tr>
<th>one</th>
<th>ten</th>
<th>eleven</th>
<th>two</th>
<th>twenty</th>
</tr>
</thead>
<tbody>
<tr>
<td>twelve</td>
<td>three</td>
<td>thirty</td>
<td>four</td>
<td>forty</td>
</tr>
<tr>
<td>fifty</td>
<td>zero</td>
<td>seventeen</td>
<td>eight</td>
<td></td>
</tr>
</tbody>
</table>

Use the leftover letters to finish the message.

The four seasons are fall, ___ ___ ___ ___ ___ ___ , ___ .

This puzzle was made using the Internet tool at http://www.superkids.com/aweb/tools/words/search
Number Words Crossword Puzzle

Across
2. Four less than ten
4. Rhymes with fine
7. Ten + Seven
8. Fifty + Thirty
10. Twenty + Twenty
11. Nothing

Down
1. Eleven – Ten
2. Two more than sixty-eight
3. Twenty – Five
5. Two tens
6. Seven + Three
9. Seven – Four
Crossword Without Clues

1. Group the words according to the number of their letters.

<table>
<thead>
<tr>
<th>3 letters</th>
<th>4 letters</th>
<th>5 letters</th>
<th>6 letters</th>
</tr>
</thead>
<tbody>
<tr>
<td>one</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>six</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>two</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Which word is by itself in a group? Where does it fit?

3. Solve the puzzle. HINT: Cross out the words as you use them.

- eighty
- six
- fifteen
- ten
- forty
- three
- nine
- twenty
- one
- two
- seventeen
- zero
- seventy
Recognizing Number Words

Circle the number words.
Cross out the words that only sound like number words.

1. Eight children ate pie.
2. Ravi ate eight cookies.
3. She won two games.
4. He only won one game.
5. Four friends played soccer for fun.
6. She had to fix six bikes.
Spelling Number Words

Circle the spelling of the number words.

HINT: Look at the words you circled.

<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>won</th>
<th>wun</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>to</th>
<th>too</th>
<th>two</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>for</th>
<th>four</th>
<th>fore</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>six</th>
<th>sicks</th>
<th>siks</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ate</th>
<th>eight</th>
<th>ait</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tens Block</td>
<td>Ones Blocks</td>
<td>Tens Block</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Hundreds Charts

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>