Adding Using a Chart

Goals
Students will add using cubes and then a chart.

PRIOR KNOWLEDGE REQUIRED
- can add
- can read a hundreds chart
- can count using a hundreds chart and otherwise

MATERIALS
1-cm connecting cubes in two colours and BLM Hundreds Chart (p M-14) [or BLM Hundreds Chart—Five Rows (p M-15) and BLM Base Ten Materials (p M-16)]
- paper ones and tens blocks (in two colours) to use on a large hundreds chart
- BLM Hundreds Chart—Three Rows (p M-17)
- BLM Hundreds Chart—One Row (p M-12)
- BLM Add Larger Numbers (p H-120)

Add using blocks. Give each student several red and blue 1-cm connecting cubes. Ask them to find 3 red blocks and 4 blue blocks. ASK: How many blocks is that altogether? Write on the board: \(3 + 4 = 7\). Repeat with various numbers and have volunteers write the addition sentences on the board.

Add using a chart and blocks. Draw the first two rows of a hundreds chart on the board (or use a large hundreds chart if available). Demonstrate how to find \(3 + 4\) by placing 3 red paper ones blocks and then 4 blue paper ones blocks on the chart in order, so that the last block is on square 7. Count as a class how many ones blocks there are altogether. Do several examples like this, until someone notices that the last number with a block is always the number of blocks. As a class, check the prediction on several examples. Ask students how putting the pieces on, in order, makes it easier to tell how many there are. Demonstrate putting 3 red and then 4 blue blocks on the chart randomly, and then count them. Then put them on in order and count again. Emphasize that when the blocks go on in order, the chart does the counting for you—the answer is under the last block.

Have students find \(4 + 5\) on their own hundreds charts (see BLM Hundreds Chart). Repeat using pairs of one-digit numbers that add to more than 10.

Use colouring and circling instead of blocks. Draw the first row of a hundreds chart on the board. Tell students that you want to add \(3 + 5\). Have a volunteer do so using the red and blue paper ones blocks. Then...
tell students that, instead of putting the 3 red paper blocks on, you are just going to shade the first 3 squares. (Remove the paper blocks and shade the squares.) Instead of putting the blue paper blocks on, you are just going to circle the next 5 numbers. (Remove the paper blocks and circle the next 5 squares.) Now we see that 3 + 5 = 8 since 8 is the last square circled.

Practise. Draw the first two rows of a hundreds chart on the board. Add several pairs of one-digit numbers whose sum is more than 10. Invite volunteers to come to the board and shade the first number of squares and then circle the second number of squares, then have students do problems individually using BLM Hundreds Chart—Three Rows. Some students may need to do the two steps (shade the first number of squares and then circle the second number of squares) separately.

\[
\text{Bonus} \quad 2 + 7 + 8; 4 + 4 + 4; 6 + 5 + 6.
\]

\[
\text{Compare the two methods. Ask how the colouring and circling method is different from the first method of adding on the hundreds chart. How is it the same? (Similarities: you are still adding in order; you only have to count the 3 and the 5, not the 8 at the end. Differences: the first method requires blocks or squares, the second you can do on a sheet of paper.)}
\]

Shade only the square showing the first number. Draw the first row of a hundreds chart on the board. Tell students that you want to add 4 + 3, but instead of colouring in the first four squares you’re just going to colour the fourth one. Count to the fourth square and ASK: What number is in it? How can I tell what the fourth square is without counting? (It has a 4 in it.) Emphasize that once you’ve coloured the fourth square, you know where to start circling. Have volunteers colour the square showing the first number and then circle the second number of squares to add: 4 + 5; 7 + 2; 2 + 6. Some students may need to practice doing each step separately.

Add a second row to the hundreds chart on the board and have volunteers solve 3 + 8 and 5 + 9. Then distribute another copy of BLM Hundreds Chart—Three Rows and have students solve: 7 + 6; 8 + 4; 9 + 5.

\[
\text{Bonus} \quad 8 + 14; 5 + 8 + 12; 7 + 14 + 6.
\]

ACTIVITY 1

Adding Machine. (See NS Part 2—Introduction)

Extensions

1. BLMs Add Larger Numbers (pH-120) and Adding to the Number 10 (pH-121)

2. BLM Adding and Order (pH-122) has the same questions as Workbook p. 31 but students shade the square showing the second number and then circle the first number of squares to add. Students can then compare their answers to their worksheet answers.
Goals
Students will add 1 or 2 by counting on.

Prior knowledge required
- can count to 20, orally and in writing
- can order numbers to 20
- can add
- knows that "next" means "right after"

Materials
BLM Next (p H-123)

NOTE: In NS1-10, students learned to determine how many more objects are in a group by counting on. In this lesson, students begin making the connection between counting on and adding. Students who need to review or practice counting what comes next in a linear model can complete BLM Next.

Adding 1 by finding the next number. Draw three circles on the board. Count the circles one at a time and write the numbers above the circles as you count:

\[
\begin{array}{cccc}
1 & 2 & 3 \\
\circ & \circ & \circ \\
\end{array}
\]

Then add one more circle and ASK: Now how many circles are there? Erase the numbers above the circles and count again, rewriting 1, 2, and 3 and adding 4 above the last circle. Repeat for several examples. Then do another example, but instead of erasing the original counting, explain that you might as well leave it there and just write the next number above the new circle. Draw 5 circles on the board and count them, writing the numbers above the circles as you go:

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 & 5 \\
\circ & \circ & \circ & \circ & \circ \\
\end{array}
\]

Then add another circle and ASK: What is the next number after 5? Have a volunteer write it over the last circle:

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 & 5 \\
\circ & \circ & \circ & \circ & \circ \\
\end{array}
\]

Write the corresponding addition sentence \((5 + 1 = 6)\).

Repeat with several examples where students add one to a number. Emphasize that the answer is just the next number you say when counting.
Write on the board the sequence of numbers from 0 to 10. Emphasize that the numbers are written in order and have students add 1 to more one-digit numbers by referring to the numbers only (without drawing pictures).

EXAMPLES: $4 + 1$ $8 + 1$ $5 + 1$ $6 + 1$ $0 + 1$ $2 + 1$

Have students do similar problems individually in their notebooks. You can repeat any of the problems done previously, but erase the answers from the board first. **EXAMPLES:** $3 + 1$; $1 + 1$; $9 + 1$; $7 + 1$.

Bonus Continue the sequence of numbers on the board to 20 and have students add: $15 + 1$; $18 + 1$; $12 + 1$; $10 + 1$; $17 + 1$.

Connection

Real world

Count the number of boys in the class together. Tell students to pretend that there will be a new boy in the class. **ASK:** Then how many boys would there be in the class? Repeat for girls. (Begin with the gender having the fewest students.)

Adding 2 by finding the next two numbers. Draw the following picture on the board:

```
1   2   3
○   ○   ○   ○   ○
```

Repeat the lesson for adding 1 with adding 2, to guide students to discover that we can add 2 by finding the next two numbers. **ASK:** What are the next two numbers after 3? What is $3 + 2$? Repeat with different examples until all students are comfortable saying the next two numbers to add 2. Then write the sequence of numbers from 0 to 10 and have volunteers find:

$4 + 2$ $8 + 2$ $5 + 2$ $6 + 2$ $0 + 2$ $2 + 2$

Have students do similar problems individually in their notebooks.

EXAMPLES: $3 + 2$; $7 + 2$; $1 + 2$; $9 + 2$.

Bonus Continue the sequence of numbers to 20 and have students add: $13 + 2$; $16 + 2$; $11 + 2$; $18 + 2$.

Connection

Literature

Two Too Many by Jo Ellen Bogart. After reading each page, **ASK:** How many wheels does a tricycle have? **SAY:** We have two too many. How many should that be? Check the answer in the picture. Some of the objects pictured may be unfamiliar, so have additional reference pictures on hand. For example, if students do not know how many antlers a moose has, show pictures of moose.

One Monkey Too Many by Jackie French Koller. Adding by 1, from 1 to 7. Students can predict what one more is each time and then count the monkeys in the picture to verify their answers.
Counting On to Add

Goals

Students will add by counting on.

PRIOR KNOWLEDGE REQUIRED

can count to 20, orally and in writing

can order numbers to 20

can add

MATERIALS

a pencil case and pencils

BLM Add to Find the Picture (p H-124)

BLM Apples (p H-125)

Adding by saying the next numbers.

Start by adding 5. Draw the following picture on the board:

\[
\begin{array}{ccc}
1 & 2 & 3 \\
\text{○} & \text{○}
\end{array}
\]

Tell students that the first 3 circles are already counted and ask a volunteer to say the next 5 numbers to add 3 + 5. Emphasize that 5 is a lot of numbers to keep track of, and ensure that the problem is posed as a challenge. (Students need to count on from 3 aloud while simultaneously keeping track of how many numbers they say.) Check the volunteer’s answer by writing the next 5 numbers above each of the white circles. If the answer is incorrect, ask another volunteer to add 5 to a number using this method, and repeat until someone is successful. If the volunteer was correct, have another volunteer add 4 + 7 using the same method. SAY: Seven is a lot of numbers to keep track of. Who thinks they can keep track of 7 numbers to find 4 + 7? Repeat with other volunteers, all adding 7 to a number. Discuss any strategies you observe volunteers using (Students might, for example, write a mark for each number they say, use their fingers to keep track, or add the numbers one at a time: 5 is 4 + 1, 6 is 4 + 2, and so on until 11 is 4 + 7.)

Review counting on your fingers.

Have students count to 10 on their fingers, starting with the thumb of their left hand. Then ask students to tell you how many fingers you are holding up. Hold up several fingers as though you counted this way and ask students what number you counted to.

Using your fingers to keep track.

Tell students that you would like to add 6 + 8, but 8 numbers is a lot to keep track of, so you will use your fingers to help you. Explain that you will hold up one finger for every number you say after 6. ASK: What is the first number that comes after 6? (hold up your
thump when they say 7) And the next number? (hold up your thumb and forefinger when they say 8) Continue in this way. After they say 10, ASK:

How many numbers have I said after 6 so far? (4) How do you know? (you’re holding up 4 fingers) Have students tell you when you have said 8 numbers after 6. ASK: How do you know we said 8 numbers? (You are holding up 8 fingers—1 for each number you said after 6.) ASK: What was the last number I said? (14) Write on the board: 6 + 8 = 14. Draw 6 coloured circles and 8 uncoloured circles in a row. Write 6 above the last coloured circle and then write the next 8 numbers above each of the uncoloured circles. Count to verify that there are 8 numbers after the 6. Then write similar problems on the board for students to solve individually using their fingers. (EXAMPLES: 4 + 5, 8 + 7, 8 + 5, 5 + 8)

ACTIVITY 1

Catch (see NS Part 2—Introduction). The first student you throw to adds 1, the second adds 2, the third adds 3, and so on to 10. Repeat.

Bonus

14 + 7, 13 + 6, 11 + 8, 14 + 6.

For students comfortable counting past 20, use larger sums. **EXAMPLES:** 15 + 8, 14 + 9, 21 + 6, 34 + 8. Students can verify their answers by using counters or models they draw.

Correcting mistakes. Model incorrect ways of counting on, such as counting more quickly or more slowly than you hold up fingers (e.g., hold up 2 fingers while adding 3 or vice versa), skipping or repeating numbers, saying some numbers in the wrong order. Challenge your students to tell you what you are doing wrong each time. Then ask volunteers to add by counting on: 7 + 3, 6 + 5, 8 + 3, 9 + 6, 7 + 7, 10 + 5.

Counting objects when some are hidden. Have ready a pencil case with 5 pencils in it. Tell students that you have 5 pencils in your pencil case (hold it up). Then show students 4 pencils outside the pencil case. How many pencils do you have altogether? Count on as a class to add: Hold up the pencil case and say 5, then hold up each pencil outside the case and say, one at a time, 6, 7, 8, 9. Write on the board: 5 + 4 = 9. Verify this by removing the 5 pencils from the case and counting all the pencils together. Repeat with various examples. Emphasize that as long as we know how many pencils are in the pencil case we don’t have to count them; we can add by counting on.

Compare adding by counting on to adding with a hundreds chart. For example, to add 5 + 3, colouring only square 5 is similar to saying 5 with your fist closed and circling the next 3 is similar to saying 6, 7, 8 while raising three fingers, one at a time.

Bonus Students who finish the worksheets early can complete BLM Apples.
Counting On in Two Ways

Goals
Students will discover that adding by counting on is easier when you start from the larger number.

PRIOR KNOWLEDGE REQUIRED
- can add by counting on
- knows that numbers can be added in any order
 \((3 + 5 = 5 + 3)\)

MATERIALS
- 10 circles on a long sheet of paper (see below)
- a paper domino (see below)

Compare 8 + 2 and 2 + 8. Have a volunteer solve 8 + 2, and then challenge another volunteer to solve 2 + 8. What do students notice about the answers? (they are the same) Why did that happen? (we added the same numbers in two ways) Draw the following on a long sheet of thick paper and stick it to the board:

\[
\begin{array}{ccccccccccc}
\bigcirc & \bigcirc \\
\end{array}
\]

Write 2 + 8 below the sheet and solve the problem by counting the white circles, starting at 3:

\[
\begin{array}{cccccccc}
3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\bigcirc & \bigcirc \\
\end{array}
\]

Then write the answer: 2 + 8 = 10.

Now turn the sheet around:

\[
\begin{array}{ccccccccccc}
\bigcirc & \bigcirc \\
\end{array}
\]

Write 8 + 2 and solve the problem by counting the dark circles starting at 9. ASK: How do I know to start at 9? (9 comes right after 8) How many numbers do I count after 8? (2) How do you know? (because there are 2 dark circles) Have a volunteer show the counting on the board. ASK: How does 8 + 2 compare to 2 + 8? Why did that happen? PROMPT: Did we change the total number of circles by turning the sheet around? (no) What did we change? (We only changed which number we counted first, the 2 or the 8.)

Order doesn’t matter in addition—review with another model. Repeat the above with a paper domino.
PROBLEM SOLVING

Selecting tools and strategies, reflecting on other ways to solve a problem.

Demonstrate counting on from each number and emphasize what changes and what stays the same.

Choosing which number to count on from. Write on the board:

\[2 + 9 = \quad \quad 9 + 2 = \quad \]

ASK: Will these problems have the same answer? (yes) How do you know? (they are adding the same numbers) Which problem is easier to solve?
PROMPT: How would I solve 2 + 9? How many numbers would I count? What number would I start at? (count 9 numbers starting at 3) How would I solve 9 + 2? (count 2 numbers starting at 10) What is easier—to count 9 numbers starting at 3 or to count 2 numbers starting at 10? (Demonstrate doing both.) Which would be faster? (counting 2 numbers starting at 10)
Emphasize that when mathematicians see two problems that they know have the same answer, they can be smart and pick the easier one to do.

Write many addition problems on the board. (EXAMPLES: 3 + 7; 8 + 4; 2 + 10; 1 + 9; 7 + 2; 5 + 1; 9 + 2; 8 + 3) Point to the first number in each problem and ASK: Is this number the bigger number? Is it less work to add (for example) 3 + 7 or 7 + 3? Verify their prediction by trying both ways.

Challenge volunteers to add more numbers both ways and to decide which they find easier. EXAMPLE: 6 + 3 or 3 + 6? At first, give volunteers the numbers to count from and the number of blanks:

\[6 _ _ _ _ _ _ _ _ _ \]

\[3 _ _ _ _ _ _ _ _ _ _ _ \]

Then have volunteers do this themselves, and discuss how they know how many blanks to draw (start at the first number and draw the second number of blanks or vice versa). Have students do similar questions individually in their notebooks. EXAMPLES: 3 + 8 or 8 + 3; 9 + 1 or 1 + 9; 14 + 2 or 2 + 14.

Bonus: 23 + 4 or 4 + 23.

ASK: Which is easier—to count on starting from the bigger number or the smaller number? Why do you think that is? (from the bigger number because there are fewer numbers to count)

ACTIVITY 1

Electrical Matching Game. Match addition sentences to their answers.
Using Number Lines to Add

Goals
Students will use number lines to add.

Prior Knowledge Required
- can count to 10
- understands the concept of more

Materials
- BLM Blank Number Lines (pp M-18–M-19)
- BLM Word Problems (p H-126)
- BLM Addition Sentence Memory (pp H-127–H-129)
- BLM Adding Cards (pp H-130–H-132)
- dice

Adding 1 with a number line. Remind students that to find $3 + 1$, they can find the number they say after three; it is the number that is one more than three. Draw a number line on the board and tell students that instead of counting on from 3 and saying the next number, they can draw a leap from 3 to the next number. Tell them to picture a frog jumping from 3 to the next number.

The frog ends up at the next number after three, or $3 + 1$. You might have a picture of a frog that you can move. Repeat several times, adding one to other numbers. You could have volunteers move the frog each time. Review the connection with more: $3 + 1$ is one more than 3 because you need one more leap to get from 3 to $3 + 1$.

Adding 2 with a number line. Students can draw two leaps in order to add two. Demonstrate adding $3 + 2$ on a number line and ask a volunteer to demonstrate $1 + 2$. You can put a big dot at the 1 so that the volunteer knows where to start. Repeat, adding two to other numbers.

Knowing where to start on the number line. Draw a number line from 0 to 10 on the board and tell students that you want to add $5 + 4$. ASK: What number should I put the big dot at to start? How is this like counting on to add? How many leaps should I draw starting at the 5? What part of counting on is this like? Emphasize that putting the big dot at 5 is like saying 5 with your fist closed and drawing 4 leaps is like saying the next four numbers after 5. Write the addition sentence below the number line.
Relate leaps to addition sentences. Point out that the leaps start and end at numbers that we see in the addition sentence—5 is where the leaps start and 9 is where they end. Join the numbers with lines:

```
0 1 2 3 4 5 6 7 8 9 10
```

Repeat with several examples and let volunteers join the numbers themselves, to emphasize that the first number you are adding is where the leaps start and the total is where they end. Then draw these number lines and have have students fill in the missing numbers in the addition sentences:

```
0 1 2 3 4 5 6
  + 3 = __
```

```
0 1 2 3 4 5 6
  + 2 = __
```

Complete number lines and fill in blanks. Draw more number lines that show addition but leave out the second number in the addition sentence. Students should fill in the number of leaps. Then draw number lines and have volunteers write out the entire addition sentence. Finally, write addition problems and have students draw the leaps to model and solve them (use BLM Blank Number Lines).

EXTRA PRACTICE: You can use BLM Blank Number Lines to give students more practice writing addition sentences for models and vice versa. Copy the BLM onto overheads, mark the starting points, draw the leaps, and have students write the corresponding addition sentences. Or distribute photocopies of the BLM, write number sentences on the board, and have students draw the corresponding models. (Laminate the photocopies to re-use them.)

ACTIVITY

Picking Pairs and Addition Memory You will need BLMs Addition Sentence Memory and Adding Cards. Choose 12 cards from each BLM (be sure they match!). Play Memory as a class or in small groups. VARIATION: Include cards with numerals on them and allow the addition sentence to match either the number line or the answer.

Extension

Provide BLM Models of Counting On (p H-133).
<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>
Hundreds Chart — Three Rows

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>
Add Larger Numbers

<table>
<thead>
<tr>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
</tbody>
</table>

22 + 7 = ____

<table>
<thead>
<tr>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
</tbody>
</table>

56 + 5 = ____

<table>
<thead>
<tr>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
<th>47</th>
<th>48</th>
<th>49</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
</tbody>
</table>

49 + 6 = ____

<table>
<thead>
<tr>
<th>71</th>
<th>72</th>
<th>73</th>
<th>74</th>
<th>75</th>
<th>76</th>
<th>77</th>
<th>78</th>
<th>79</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
</tbody>
</table>

75 + 10 = ____
Adding to the Number 10

☐ Use the chart to add.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
</tbody>
</table>

10 + 4 = __14__

10 + 7 = ____

10 + 3 = ____

10 + 6 = ____

☐ Add without the chart.

10 + 5
10 + 9
10 + 2
10 + 8
Adding and Order

☐ Shade the square showing the second number.
☐ Circle the first number of squares.
☐ Add.

8 + 5 =
7 + 3 =
5 + 2 = 7

8 + 5 =
4 + 7 =
9 + 5 =
Add to Find the Picture

☐ Colour each part the correct colour.

Red parts add to 5.
Orange parts add to 6.
Green parts add to 7.
Yellow parts add to 8.

What picture do you see? __________________________
Apples

There are 12 apples in the bag.

☐ Add by counting on.

12 + 3 = 15
12 + 2 = 14
12 + 6 = 18
12 + 5 = 17
12 + 4 = 16
12 + 8 = 20
Word Problems

- Write the addition sentence.
- Solve the problems using number lines.

Three flies were buzzing.
Four joined them.

There are ___ flies altogether.

John has five marbles.
Ron has two marbles.

They have _____ marbles altogether.

Teresa has four red marbles
and five blue marbles.

She has _____ marbles in total.
Addition Sentence Memory (1)
Addition Sentence Memory (2)
Addition Sentence Memory (3)
Adding Cards (1)

0 + 0
2 + 0
4 + 0
6 + 0
1 + 1

1 + 0
3 + 0
5 + 0
0 + 1
2 + 1

NAME ___________________________ DATE ___________________________
Adding Cards (2)

<table>
<thead>
<tr>
<th>3 + 1</th>
<th>4 + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 + 1</td>
<td>0 + 2</td>
</tr>
<tr>
<td>1 + 2</td>
<td>2 + 2</td>
</tr>
<tr>
<td>3 + 2</td>
<td>4 + 2</td>
</tr>
<tr>
<td>0 + 3</td>
<td>1 + 3</td>
</tr>
</tbody>
</table>
Adding Cards (3)

2 + 3
0 + 4
2 + 4
1 + 5

3 + 3
1 + 4
0 + 5
0 + 6
Models of Counting On

☐ Add.

4 + 3 = ____

3 + 2 = ____

7 + 2 = ____

7 + 3 = ____

1 + 3 = ____

4 + 2 = ____